【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動這些金片:每次只能移動一片金片;每次移動的金片必須套在某根針上;大片不能疊在小片上面.設(shè)移完n片金片總共需要的次數(shù)為an,可推得a1=1,an+1=2an+1.如圖是求移動次數(shù)在1000次以上的最小片數(shù)的程序框圖模型,則輸出的結(jié)果是( 。
A. 8B. 9C. 10D. 11
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)、兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件,乙種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件.已知設(shè)備甲每天的租賃費(fèi)為元,設(shè)備乙每天的租賃費(fèi)為元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品件,類產(chǎn)品件,求所需租賃費(fèi)最少為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,.從數(shù)列中選出項(xiàng)并按原順序組成的新數(shù)列記為,并稱為數(shù)列的項(xiàng)子列.例如數(shù)列、、、為的一個項(xiàng)子列.
(1)試寫出數(shù)列的一個項(xiàng)子列,并使其為等差數(shù)列;
(2)如果為數(shù)列的一個項(xiàng)子列,且為等差數(shù)列,證明:的公差滿足;
(3)如果為數(shù)列的一個項(xiàng)子列,且為等比數(shù)列,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:(),左、右焦點(diǎn)分別是、且,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點(diǎn)
(1)求橢圓的方程;
(2)設(shè)橢圓:,為橢圓上任意一點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn),射線交橢圓于點(diǎn)
①求的值;
②令,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系xOy中,點(diǎn)A坐標(biāo)為(2,0),點(diǎn)B坐標(biāo)為(4,3),點(diǎn)C坐標(biāo)為(1,3),且(t∈R).
(1) 若CM⊥AB,求t的值;
(2) 當(dāng)0≤ t ≤1時,求直線CM的斜率k和傾斜角θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”沿線的20國青年評選出了中國“新四大發(fā)明”:高鐵、支付寶、共享單車和網(wǎng)購.2019年春節(jié)期間,“支付寶大行動”用發(fā)紅包的方法刺激支付寶的使用.某商家統(tǒng)計(jì)前5名顧客掃描紅包所得金額分別為5.2元,2.9元,3.3元,5.9元,4.8元,商家從這5名顧客中隨機(jī)抽取3人贈送飲水杯.
(1)求獲得飲水杯的三人中至少有一人的紅包超過5元的概率;
(2)統(tǒng)計(jì)一周內(nèi)每天使用支付寶付款的人數(shù)x與商家每天的凈利潤y元,得到7組數(shù)據(jù),如表所示,并作出了散點(diǎn)圖.
(i)直接根據(jù)散點(diǎn)圖判斷,與出哪一個適合作為每天的凈利潤的回歸方程類型.
(ii)根據(jù)(i)的判斷,建立y關(guān)于x的回歸方程;若商家當(dāng)天的凈利潤至少是1400元,估計(jì)使用支付寶付款的人數(shù)至少是多少?(a,b,c,d的值取整數(shù))
參考數(shù)據(jù):
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點(diǎn)與拋物線的焦點(diǎn)關(guān)于原點(diǎn)對稱,過點(diǎn)且斜率為的直線與拋物線交于不同兩點(diǎn),線段的中點(diǎn)為,直線與拋物線交于兩點(diǎn).
(Ⅰ)判斷是否存在實(shí)數(shù)使得四邊形為平行四邊形.若存在,求出的值;若不存在,說明理由;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)、的坐標(biāo)分別為和,動點(diǎn)P滿足,設(shè)動點(diǎn)P的軌跡為,以動點(diǎn)P到點(diǎn)距離的最大值為長軸,以點(diǎn)、為左、右焦點(diǎn)的橢圓為,則曲線和曲線的交點(diǎn)到軸的距離為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com