【題目】已知函數(shù)f(x)=3sin(ωx+ 的部分圖象如圖所示,A,B兩點(diǎn)之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長(zhǎng)度后所得函數(shù)圖象關(guān)于y軸對(duì)稱,則t的最小值為(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:由題設(shè)圖象知,周期 T=|AB|,解得:T=20, ∴ω= =
可得f(x)=3sin( +
∵f(2)=0,
∴sin( +)=0,
Φ ,
=
故得f(x)=3sin(
將函數(shù)f(x)的圖象向右平移t(t>0)的單位可得:y=3sin[ ]=3in( ),
函數(shù)圖象關(guān)于y軸對(duì)稱,
,
整理得:﹣t=7+10k,
∵t>0,
∴當(dāng)k=﹣1時(shí),t的最小值為3.
故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=sin (2x﹣ )(x∈R),給出下列三個(gè)結(jié)論: ①對(duì)于任意的x∈R,都有f(x)=cos (2x﹣ );
②對(duì)于任意的x∈in R,都有f(x+ )=f(x﹣ );
③對(duì)于任意的x∈R,都有f( ﹣x)=f( +x).
其中,全部正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:集合中至少存在三個(gè)不同的數(shù)構(gòu)成等比數(shù)列,則稱函數(shù)是等比源函數(shù)

)判斷下列函數(shù):①;;中,哪些是等比源函數(shù)?(不需證明)

)判斷函數(shù)是否為等比源函數(shù),并證明你的結(jié)論.

)證明: , ,函數(shù)都是等比源函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx+ ,m∈R,若對(duì)任意b>a>0, <1恒成立,則m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

>300

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15


(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為ω)的關(guān)系式為: S= ,試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于200元且不超過600元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)? 附:

P(K2≥k0

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

k2=

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(rùn)(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;

(Ⅱ)問:年產(chǎn)量為多少千件時(shí),該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤(rùn)最大?

注:年利潤(rùn)=年銷售收入-年總成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三某班的一次測(cè)試成績(jī)的頻率分布表以及頻率分布直方圖中的部分?jǐn)?shù)據(jù)如下,請(qǐng)根據(jù)此解答如下問題:

(1)求班級(jí)的總?cè)藬?shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補(bǔ)充完整;
(3)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100)之間的概率.

分組

頻數(shù)

頻率

[50,60)

0.08

[60,70)

7

[70,80)

10

[80,90)

[90,100)

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅲ)若,求證不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙十一網(wǎng)購(gòu)狂歡,快遞業(yè)務(wù)量猛增.甲、乙兩位快遞員日到日每天送件數(shù)量的莖葉圖如圖所示.

)根據(jù)莖葉圖判斷哪個(gè)快遞員的平均送件數(shù)量較多(寫出結(jié)論即可);

)求甲送件數(shù)量的平均數(shù);

)從乙送件數(shù)量中隨機(jī)抽取個(gè),求至少有一個(gè)送件數(shù)量超過甲的平均送件數(shù)量的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案