【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB2,∠BAD60°.

(1)求證:BD⊥平面PAC;

(2)PA4,求平面PBC與平面PDC所成角的余弦值.

【答案】1)見解析(2

【解析】

1)通過證明BDACBDPA,可證得結(jié)論;

2)以BDAC的交點O為坐標原點,OB,OC所在直線為x軸,y軸,過點O且垂直于平面ABCD的直線為z軸,建立如圖所示的空間直角坐標系,分別計算平面PBC的一個法向量為n1,平面PDC的一個法向量為n2,利用向量夾角公式可得解.

(1)證明:因為底面ABCD是菱形,所以BDAC.

PA⊥平面ABCD

所以BDPA.PAACA,所以BD⊥平面PAC.

(2)BDAC的交點O為坐標原點,OB,OC所在直線為x軸,y軸,過點O且垂直于平面ABCD的直線為z軸,建立如圖所示的空間直角坐標系.

由已知可得,AOOCODOB1,

所以P(0,-4),B(1,0,0),C(0,0),D(10,0)

(0,2,-4),(1,0)(1,-,0)

設平面PBC的一個法向量為n1(x1y1,z1),平面PDC的一個法向量為n2(x2,y2,z2)

由可得x1,可得n1.

同理,由可得n2

所以cosn1,n2〉==-,所以平面PBC與平面PDC所成角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點.

1)求證: 平面;

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間情況,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性微信用戶各50名.其中每天玩微信時間超過6小時的用戶列為微信控,否則稱其為非微信控,調(diào)查結(jié)果如表:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從參與調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽選取的5人中再隨機抽取3人贈送價值200元的護膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列及數(shù)學期望及方差.

參考公式:,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是( )

A.若正數(shù)是等差數(shù)列,則是等比數(shù)列

B.若正數(shù)是等比數(shù)列,則是等差數(shù)列

C.若正數(shù)是等差數(shù)列,則是等比數(shù)列

D.若正數(shù)是等比數(shù)列,則是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】探究函數(shù)的圖像時,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.02

4.04

4.3

5

5.8

7.57

觀察表中y值隨x值的變化情況,完成以下的問題:

1)函數(shù)的遞減區(qū)間是 ,遞增區(qū)間是 ;

2)若對任意的恒成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過原點,且在處取得極值,直線與曲線在原點處的切線互相垂直.

求函數(shù)的解析式;

若對任意實數(shù)的,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著電子產(chǎn)品的不斷更新完善,更多的電子產(chǎn)品逐步走入大家的世界,給大家?guī)砹素S富多彩的生活,但也帶來了一些負面的影響,某公司隨即抽取人對某電子產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的年齡層次以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

歲以下

歲或歲以上

總計

認為某電子產(chǎn)品對生活有益

認為某電子產(chǎn)品對生活無益

總計

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認為電子產(chǎn)品的態(tài)度與年齡有關(guān)系?

(2)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員進行抽獎活動,獎金額以及發(fā)放的概率如下:

獎金額

元(謝謝支持)

概率

現(xiàn)在甲、乙兩人參與了抽獎活動,記兩人獲得的獎金總金額為,求的分布列和數(shù)學期望.

參與公式:

臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖1和圖2中所有的正方形都全等,圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是( )

A. B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學的話恰有兩句是對的,則( )

A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎

C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎

【答案】C

【解析】若甲乙丙同時獲獎,則甲丙的話錯,乙丁的話對;符合題意;

若甲乙丁同時獲獎,則乙的話錯,甲丙丁的話對;不合題意;

若甲丙丁同時獲獎,則丙丁的話錯,甲乙的話對;符合題意;;

若丙乙丁同時獲獎,則甲乙丙的話錯,丁的話對;不合題意;

因此乙和丁不可能同時獲獎,選C.

型】單選題
結(jié)束】
12

【題目】已知當時,關(guān)于的方程有唯一實數(shù)解,則值所在的范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案