.圖(1)~(4)分別包含1個(gè)、5個(gè)、13個(gè)、25個(gè)第二十九屆北京奧運(yùn)會(huì)吉祥物“福娃迎迎”,按同樣的方式構(gòu)造圖形,設(shè)第個(gè)圖形包含個(gè)“福娃迎迎”,

   ; ____________.(答案用數(shù)字或的解析式表示)

 

【答案】

41,4(n-1)

【解析】

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為4的正方形ABCD中
(1)點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),將△AED,△CFD分別沿DE,DF折A起,使A,C兩點(diǎn)重合于點(diǎn)A',求證:面A'DF⊥面A'EF.
(2)當(dāng)BE=BF=
14
BC時(shí),求三棱錐A'-EFD的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰安二模)形狀如圖所示的三個(gè)游戲盤中(圖(1)是正方形,M、N分別是所在邊中點(diǎn),圖(2)是半徑分別為2和4的兩個(gè)同心圓,O為圓心,圖(3)是正六邊形,點(diǎn)P為其中心)各有一個(gè)玻璃小球,依次水平搖動(dòng)三個(gè)游戲盤,當(dāng)小球靜止后,就完成了一局游戲.

(1)一局游戲后,這三個(gè)盤中的小球都停在陰影部分的概率是多少?
(II)用隨機(jī)變量ξ表示一局游戲后,小球停在陰影部分的事件個(gè)數(shù)與小球沒有停在陰影部分的事件個(gè)數(shù)之差的絕對值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•河北區(qū)二模)已知如圖(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的動(dòng)點(diǎn),且EF∥BC,設(shè)AE=x(0<x<4).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖(2).
(Ⅰ)求證:平面ABE⊥平面ABCD;
(Ⅱ)若以B、C、D、F為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(Ⅲ)當(dāng)f(x)取得最大值時(shí),求異面直線CD和BE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海二模)如圖,長方體ABCD-A1B1C1D1中,CC1=4,AB=BC=3.
(1)若E、F分別是BC1、A1C1中點(diǎn),求證:EF∥平面DCC1;
(2)求二面角A1-BC1-D的正弦值.

查看答案和解析>>

同步練習(xí)冊答案