已知點A(0,1)是橢圓上的一點,P點是橢圓上的動點,
則弦AP長度的最大值為(   )
A.B.2C.D.4
C

試題分析:設(shè)x=2cosα,y=sinα,則弦AP=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且

(1)求橢圓的標準方程;
(2)設(shè)P為橢圓上一點,若過點M(2,0)的直線與橢圓相交于不同兩點A和B,且滿足(O為坐標原點),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,直線相交于兩點,軸、軸分別相交于、兩點,為坐標原點.
(1)若直線的方程為,求外接圓的方程;
(2)判斷是否存在直線,使得、是線段的兩個三等分點,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:上,且橢圓的離心率e =

(1)求橢圓的標準方程;
(2)設(shè)P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的左、右焦點分別為,點M在該橢圓上,且,則點M到y(tǒng)軸的距離為(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點和點分別為橢圓的中心和右焦點,點為橢圓上的任意一點,則的最小值為( )
A.B.-C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,圓,過橢圓上任一與頂點不重合的點P引圓O的兩條切線,切點分別為A,B,直線AB與x軸,y軸分別交于點M,N,則_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:+y2=1(a>1)的上頂點為M(0,1),兩條過M的動弦MA、MB滿足MA⊥MB.
(1)當坐標原點到橢圓E的準線距離最短時,求橢圓E的方程;
(2)若Rt△MAB面積的最大值為,求a;
(3)對于給定的實數(shù)a(a>1),動直線AB是否經(jīng)過一定點?如果經(jīng)過,求出定點坐標(用a表示);反之,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點,A,B分別是橢圓E的左、右頂點,且+5=0.
 
(1)求橢圓E的離心率; (2)已知點D(1,0)為線段OF2的中點,M為橢圓E上的動點(異于點A、B),連結(jié)MF1并延長交橢圓E于點N,連結(jié)MD、ND并分別延長交橢圓E于點P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案