已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),試討論是否存在,使得.
(1)詳見解析;(2)詳見解析.
解析試題分析:(1)先求出導(dǎo)數(shù)為二次函數(shù),對和進(jìn)行分類討論,根據(jù)導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間;(2)由作差法將等式進(jìn)行因式分解,得到
,于是將問題轉(zhuǎn)化為方程在上有解,并求出該方程的兩根,并判定其中一根在區(qū)間上,并由
以及確定滿足條件時(shí)的取值范圍,然后取相應(yīng)的補(bǔ)集作為滿足條件時(shí)的取值范圍.
(1),方程的判別式為,
①當(dāng)時(shí),,則,此時(shí)在上是增函數(shù);
②當(dāng)時(shí),方程的兩根分別為,,
解不等式,解得或,
解不等式,解得,
此時(shí),函數(shù)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為;
綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為;
(2)
,
若存在,使得,
必須在上有解,
,,
方程的兩根為,,
,,
依題意,,即,
,即,
又由得,
故欲使
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某通訊公司需要在三角形地帶OAC區(qū)域內(nèi)建造甲、乙兩種通信信號加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域BOC內(nèi),乙中轉(zhuǎn)站建在區(qū)域AOB內(nèi).分界線OB固定,且百米,邊界線AC始終過點(diǎn)B,邊界線OA、OC滿足∠AOC=75°,∠AOB=30°,∠BOC=45°,設(shè)百米,百米.
(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時(shí)?整個(gè)中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在R上的奇函數(shù)有最小正周期2,且當(dāng)時(shí),.
(1)求和的值;
(2)求在[-1,1]上的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/53/c/sicjf1.png" style="vertical-align:middle;" />的函數(shù),若同時(shí)滿足:
①在內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[],使在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fd/1/1ufk04.png" style="vertical-align:middle;" />;
那么把函數(shù)()叫做閉函數(shù).
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 若是閉函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的函數(shù)及二次函數(shù)滿足:且.
(1)求和的解析式;
(2)對于,均有成立,求的取值范圍;
(3)設(shè),討論方程的解的個(gè)數(shù)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有實(shí)數(shù)根,求m的取值范圍;
(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個(gè)相異實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=|ax-2|+bln x(x>0,實(shí)數(shù)a,b為常數(shù)).
(1)若a=1,f(x)在(0,+∞)上是單調(diào)增函數(shù),求b的取值范圍;
(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,從點(diǎn)P1(0,0)作軸的垂線交曲線于點(diǎn),曲線在點(diǎn)處的切線與軸交于點(diǎn).再從做軸的垂線交曲線于點(diǎn),依次重復(fù)上述過程得到一系列點(diǎn):;;…;,記點(diǎn)的坐標(biāo)為().
(1)試求與的關(guān)系();
(2)求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com