設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,求數(shù)列的前項(xiàng)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列{an}的所有項(xiàng)均為正數(shù),首項(xiàng)a1=1,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1-λan}的前n項(xiàng)和為Sn,若Sn=2n-1(n∈N*),求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列{an}中,a16+a17+a18=a9=-36,其前n項(xiàng)和為Sn.
(1)求Sn的最小值,并求出Sn取最小值時n的值;
(2)求Tn=|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和為,已知,.
(1)求;
(2)若從中抽取一個公比為的等比數(shù)列,其中,且,.
①當(dāng)取最小值時,求的通項(xiàng)公式;
②若關(guān)于的不等式有解,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為等比數(shù)列,其中a1=1,且a2,a3+a5,a4成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式:
(2)設(shè),求數(shù)列{}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足().
(1)若數(shù)列是等差數(shù)列,求它的首項(xiàng)和公差;
(2)證明:數(shù)列不可能是等比數(shù)列;
(3)若,(),試求實(shí)數(shù)和的值,使得數(shù)列為等比數(shù)列;并求此時數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),且),且數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列。
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,當(dāng)時,求數(shù)列的前n項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列前n項(xiàng)和為,首項(xiàng)為,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com