已知數(shù)列的前項和,
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)若,求數(shù)列的前項和.

(I) 詳見解析;(II)

解析試題分析:(I) 求證:數(shù)列是等差數(shù)列,首先確定數(shù)列的通項公式或關(guān)系式,由,求數(shù)列的通項公式或關(guān)系式,可利用來求,注意需討論時的情況,本題由,得到數(shù)列的遞推式,,根據(jù),證明等于與無關(guān)的常數(shù)即可;(Ⅱ)求數(shù)列的前項和,需求出數(shù)列的通項公式,,這是一個等比數(shù)列與一個等差數(shù)列對應(yīng)項積所組成的數(shù)列,故可用錯位相減法來求.
試題解析:(I),當(dāng)時,,,       1分
當(dāng)時,,                                 2分
, ,              4分
,又,
是首項為1,公差為1的等差數(shù)列.                  7分
(II),,                                 8分
.                                        9分
,①
,    ②          11分
①-②得,
 ,     13分
.                                     14分
考點:求數(shù)列的通項公式,等差數(shù)列的定義,數(shù)列求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,,.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列是首項為,公差為的等差數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知無窮數(shù)列的前項和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項公式;
(2)若,,且,求數(shù)列的前項和;
(3)試探究、滿足什么條件時,數(shù)列是公比不為的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:,(其中為非零常數(shù),).
(1)判斷數(shù)列是不是等比數(shù)列?
(2)求
(3)當(dāng)時,令為數(shù)列的前項和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的首項,且滿足
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

三個數(shù)成等比數(shù)列,其積為512,如果第一個數(shù)與第三個數(shù)各減2,則成等差數(shù)列,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項和為,已知,,數(shù)列是公差為d的等差數(shù)列,.
(1)求d的值;
(2)求數(shù)列的通項公式;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列{an}中,為其前n項和,且
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是公比大于1的等比數(shù)列,為其前項和已知,且,,構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,求數(shù)列的前項和

查看答案和解析>>

同步練習(xí)冊答案