【題目】已知函數(shù),且.

(Ⅰ)求

(Ⅱ)在函數(shù)的圖象上取定兩點(diǎn),,記直線的斜率為,問(wèn):是否存在,使成立?若存在,求出的值(用表示);若不存在,請(qǐng)說(shuō)明理由.

【答案】(Ⅰ)1(Ⅱ)存在,

【解析】

(Ⅰ)討論不成立,,則,利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得的最小值,只需即可.

(Ⅱ)由題意可得,令,在區(qū)間上單調(diào)遞增,求出,結(jié)合(Ⅰ)可得,利用零點(diǎn)存在性定理即可證出.

解:(Ⅰ)若,則對(duì)一切,,這與題設(shè)矛盾;

,,令,得.

當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增,

故當(dāng)時(shí),取最小值.

于是對(duì)一切,恒成立,當(dāng)且僅當(dāng).

,則.

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),,單調(diào)遞減.

故當(dāng)時(shí),取最大值.

因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,.

(Ⅱ)由題意知,.

,在區(qū)間上單調(diào)遞增;

,.

由(Ⅰ)得恒成立,

從而,

,

所以,.

由零點(diǎn)存在性定理得,存在唯一,使,且.

綜上所述,存在使成立,且.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于很多人來(lái)說(shuō),提前消費(fèi)的認(rèn)識(shí)首先是源于信用卡,在那個(gè)工資不高的年代,信用卡絕對(duì)是神器,稍微大件的東西都是可以選擇用信用卡來(lái)買(mǎi),甚至于分期買(mǎi),然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車(chē)貸到一般的現(xiàn)金貸.信用卡忽如一夜春風(fēng)來(lái),遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了100人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人)

經(jīng)常使用信用卡

偶爾或不用信用卡

合計(jì)

40歲及以下

15

35

50

40歲以上

20

30

50

合計(jì)

35

65

100

1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?

2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按經(jīng)常使用偶爾或不用這兩種類(lèi)型進(jìn)行分層抽樣抽取10人,然后,再?gòu)倪@10人中隨機(jī)選出4人贈(zèng)送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;

②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機(jī)抽取3人贈(zèng)送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機(jī)變量的分布列、數(shù)學(xué)期望和方差.

參考公式:,其中

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的離心率為且經(jīng)過(guò)點(diǎn)

1)求橢圓C的方程;

2)過(guò)點(diǎn)(0,2)的直線l與橢圓C交于不同兩點(diǎn)AB,以OA、OB為鄰邊的平行四邊形OAMB的頂點(diǎn)M在橢圓C上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分10分)選修4-5:不等式選講

已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).

(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;

(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保障某治療新冠肺炎藥品的主要藥理成分在國(guó)家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),武漢某制藥廠在該藥品的生產(chǎn)過(guò)程中,檢驗(yàn)員在一天中按照規(guī)定從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測(cè),測(cè)量其主要藥理成分含量(單位:mg.根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的主要藥理成分含量服從正態(tài)分布Nμ,σ2.在一天內(nèi)抽取的20件產(chǎn)品中,如果有一件出現(xiàn)了主要藥理成分含量在(μ3σμ+3σ)之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查.

1)下面是檢驗(yàn)員在224日抽取的20件藥品的主要藥理成分含量:

10.02

9.78

10.04

9.92

10.14

10.04

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

9.95

10.05

10.05

9.96

10.12

經(jīng)計(jì)算得xi9.96,s0.19;其中xi為抽取的第i件藥品的主要藥理成分含量,i12,,20.用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,利用估計(jì)值判斷是否需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查?

2)假設(shè)生產(chǎn)狀態(tài)正常,記X表示某天抽取的20件產(chǎn)品中其主要藥理成分含量在(μ3σ,μ+3σ)之外的藥品件數(shù),求PX1)及/span>X的數(shù)學(xué)期望.

附:若隨機(jī)變量Z服從正態(tài)分布Nμσ2),則Pμ3σZμ+3σ≈0.99740.997419≈0.95.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)全校名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)都小于的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求曲線的極坐標(biāo)方程和曲線的普通方程;

2)設(shè)射線與曲線交于不同于極點(diǎn)的點(diǎn),與曲線交于不同于極點(diǎn)的點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某客戶(hù)考察了一款熱銷(xiāo)的凈水器,使用壽命為十年,改款凈水器為三級(jí)過(guò)濾,每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn).在使用過(guò)程中,一級(jí)濾芯需要不定期更換,其中每更換個(gè)一級(jí)濾芯就需要更換個(gè)二級(jí)濾芯,三級(jí)濾芯無(wú)需更換.其中一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元.記一臺(tái)凈水器在使用期內(nèi)需要更換的二級(jí)濾芯的個(gè)數(shù)構(gòu)成的集合為.如圖是根據(jù)臺(tái)該款凈水器在十年使用期內(nèi)更換的一級(jí)濾芯的個(gè)數(shù)制成的柱狀圖.

(1)結(jié)合圖,寫(xiě)出集合

(2)根據(jù)以上信息,求出一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于元的概率(以臺(tái)凈水器更換二級(jí)濾芯的頻率代替臺(tái)凈水器更換二級(jí)濾芯發(fā)生的概率);

(3)若在購(gòu)買(mǎi)凈水器的同時(shí)購(gòu)買(mǎi)濾芯,則濾芯可享受折優(yōu)惠(使用過(guò)程中如需再購(gòu)買(mǎi)無(wú)優(yōu)惠).假設(shè)上述臺(tái)凈水器在購(gòu)機(jī)的同時(shí),每臺(tái)均購(gòu)買(mǎi)個(gè)一級(jí)濾芯、個(gè)二級(jí)濾芯作為備用濾芯(其中,),計(jì)算這臺(tái)凈水器在使用期內(nèi)購(gòu)買(mǎi)濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶(hù)購(gòu)買(mǎi)凈水器的同時(shí)購(gòu)買(mǎi)備用濾芯的總數(shù)也為個(gè),則其中一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù)應(yīng)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對(duì)稱(chēng)曲線,點(diǎn),分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案