【題目】選修4—4:坐標系與參數(shù)方程.

已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程為

(1)求直線l的傾斜角和曲線C的直角坐標方程;

(2)設直線l與曲線C交于A,B兩點,求|AB|.

【答案】1曲線C的直角坐標方程為 ;(2

【解析】試題分析: (1)直線 的參數(shù)方程為 (t為參數(shù)),消去參數(shù) 化為普通方程可得,進而得到傾斜角.曲線 的極坐標方程為,即 利用 ,即可化為直角坐標方程.
(2)直線方程與雙曲線方程聯(lián)立化為 ,利用 即可得出.

試題解析(1)直線l的普通方程為 xy2 0,

其斜率為 ,

直線l的傾斜角為 .

曲線C的極坐標方程為13sin2θ,即ρ23ρ2sin2θ2,

曲線C的直角坐標方程為x2-2y2=2.

(2)可得直線l的參數(shù)方程的標準形式為 (t為參數(shù)),代入曲線C的直角坐標方程x22y22 .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】古代中國數(shù)學輝煌燦爛,在《張丘建算經(jīng)》中記載:“今有十等人,大官甲等十人官賜金,以等次差降之.上三人先入,得金四斤持出;下四人后入,得金三斤持出;中央三人未到者,亦依等次更給.問:各得金幾何及未到三人復應得金幾何?”則該問題中未到三人共得金多少斤?(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=( 2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③函數(shù)y=3(x﹣1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④y=2|x|的最小值為1
⑤對于函數(shù)f(x),若f(﹣1)f(3)<0,則方程f(x)=0在區(qū)間[﹣1,3]上有一實根;
其中正確命題的序號是(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位有車牌尾號為的汽車和尾號為的汽車,兩車分屬于兩個獨立業(yè)務部分.對一段時間內(nèi)兩輛汽車的用車記錄進行統(tǒng)計,在非限行日, 車日出車頻率, 車日出車頻率.該地區(qū)汽車限行規(guī)定如下:

車尾號

限行日

星期一

星期二

星期三

星期四

星期五

現(xiàn)將汽車日出車頻率理解為日出車概率,且 兩車出車相互獨立.

I)求該單位在星期一恰好出車一臺的概率.

II)設表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求的分布列及其數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l被兩直線l1:4x+y+6=0和l2:3x﹣5y﹣6=0截得線段的中點為P(0,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)當時,設的兩個極值點,)恰為的零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是奇函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(﹣2)=0,則(x﹣3)f(x)<0的解集是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)a≠0,函數(shù)f(x)=
(1)若a=﹣3,求f(10),f(f(10))的值;
(2)若f(1﹣a)=f(1+a),求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且當x>1時,f(x)>0.
(1)判斷函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性并證明;
(2)解不等式f(x)+f(x﹣2)≤3.

查看答案和解析>>

同步練習冊答案