【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為( 。
A.9
B.18
C.20
D.35

【答案】B
【解析】解:初始值n=3,x=2,程序運(yùn)行過程如下表所示:
v=1
i=2 v=1×2+2=4
i=1 v=4×2+1=9
i=0 v=9×2+0=18
i=﹣1 跳出循環(huán),輸出v的值為18.
故選:B.
由題意,模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的i,v的值,當(dāng)i=﹣1時(shí),不滿足條件i≥0,跳出循環(huán),輸出v的值為18.;本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的i,v的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),角的終邊經(jīng)過點(diǎn).若的圖象上任意兩點(diǎn),且當(dāng)時(shí),的最小值為.

(1) 的值;

(2)求函數(shù)上的單調(diào)遞減區(qū)間;

(3)當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點(diǎn),若其歐拉線方程為,則頂點(diǎn)C的坐標(biāo)是()

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無零點(diǎn),求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓Mx2+y2+ay=0(a>0),直線lx-7y-2=0,且直線l與圓M相交于不同的兩點(diǎn)A,B

(1)若a=4,求弦AB的長;

(2)設(shè)直線OA,OB的斜率分別為k1,k2,若k1+k2=,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場(chǎng)的30天中,其銷售價(jià)格(元)和時(shí)間(天)的關(guān)系如圖所示.

(1)求銷售價(jià)格(元)和時(shí)間(天)的函數(shù)關(guān)系式;

(2)若日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場(chǎng)第幾天時(shí),日銷售額(元)最高,且最高為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,若函數(shù)y=f(f(x))-a 恰有5個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖像如圖所示,為最高點(diǎn),該圖像與軸交于點(diǎn)軸交于點(diǎn),且的面積為

(1)求函數(shù)的解析式;

(2)將函數(shù)的圖像向右平移個(gè)單位,再將所得圖像上各點(diǎn)的橫坐標(biāo)伸長為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求上的單調(diào)遞增區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的負(fù)半軸的拋物線截直線y=x所得的弦長|P1P2|=4,求此拋物線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案