.(12分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/5/odvj9.gif" style="vertical-align:middle;" />,且同時(shí)滿足:(Ⅰ)對(duì)任意,總有;(Ⅱ);(Ⅲ)若,則有
(1)試求的值;
(2)試求函數(shù)的最大值;
(3)試證明:當(dāng)時(shí),



(3)當(dāng)時(shí),
時(shí),

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):,其中是儀器的月產(chǎn)量.
(1) 將利潤表示為月產(chǎn)量的函數(shù);
(2) 當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少元(總收益=總成本+利潤) ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題12分)已知二次函數(shù).
(1)判斷命題:“對(duì)于任意的R(R為實(shí)數(shù)集),方程必有實(shí)數(shù)根”的真假,并寫出判斷過程
(2),若在區(qū)間內(nèi)各有一個(gè)零點(diǎn).求實(shí)數(shù)a的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題滿分12分)
一批救災(zāi)物資隨26輛汽車從某市以x km/h的速度勻速開往相距400 km的災(zāi)區(qū).為安全起見,每兩輛汽車的前后間距不得小于km,車速不能超過100km/h,設(shè)從第一輛汽車出發(fā)開始到最后一輛汽車到達(dá)為止這段時(shí)間為運(yùn)輸時(shí)間,問運(yùn)輸時(shí)間最少需要多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的值域G;
(2)若對(duì)于G內(nèi)的所有實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)對(duì)一切實(shí)數(shù)都有成立,且.
(1)求的值。                   
(2)求的解析式。               
(3)已知,設(shè)P:當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足P成立的的集合記為,滿足Q成立的的集合記為,求為全集)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)     
(1)若,求的值;
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求函數(shù)的解析式;并判斷上的單調(diào)性(不要求證明);
(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)計(jì)算下列各式的值:
(1); (2)

查看答案和解析>>

同步練習(xí)冊(cè)答案