精英家教網 > 高中數學 > 題目詳情
已知橢圓的中心在坐標原點O,焦點在x軸上,左焦點為F,左準線與x軸的交點為M,
OM
=4
OF

(1)求橢圓的離心率e;
(2)過左焦點F且斜率為
2
的直線與橢圓交于A、B兩點,若
OA
OB
=-2
,求橢圓的方程.
分析:(1)先求出左焦點F、左準線與x軸的交點M的坐標,由
OM
=4
OF
,得出a和c的關系,從而求出離心率的值.
(2)點斜式設出直線AB的方程,由離心率的值設出橢圓的方程,將這兩個方程聯立方程組,應用根與系數的關系,由
OA
OB
=-2
解出橢圓方程中的待定系數,從而求出橢圓的方程.
解答:解:(1)設橢圓方程為
x2
a2
+
y2
b2
=1,F(-c,0),M(-
a2
c
,0)

OM
=4
OF
,有(-
a2
c
,0)=4(-c,0)
.(3分)
則有
a2
c
=4c
,即
c2
a2
=
1
4
,∴e=
c
a
=
1
2
.(6分)
(2)設直線AB的方程為y=
2
(x+c)
,直線AB與橢圓的交點為A(x1,y1),B(x2,y2).
由(I)可得a2=4c2,b2=3c2
3x2+4y2=12c2
y=
2
(x+c).
 消去y,得11x2+16cx-4c2=0.(9分)
x1+x2=-
16c
11
,x1x2=-
4
11
c2
. 
AB
OB
=(x1,y1)•(x2,y2)=x1x2+y1y2
,
且y1•y2=2(x1+c)(x2+c)=2x1x2+2c(x1+x2)+2c2
∴3x1x2+2c(x1+x2)+2c2=-2.(11分)
-
12
11
c2-
32
11
c2+2c2=-2
,∴c2=1.則a2=4,b2=2.
橢圓的方程為
x2
4
+
y2
2
=1
.(13分)
點評:本題考查直線方程、橢圓的方程、直線和橢圓的位置關系,兩個向量的數量積公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知橢圓的中心在坐標原點O,焦點在x軸上,短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點.過右焦點F與x軸不垂直的直線l交橢圓于P,Q兩點.
(1)求橢圓的方程;
(2)當直線l的斜率為1時,求△POQ的面積;
(3)在線段OF上是否存在點M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在坐標原點,且經過點M(1,
2
5
5
)
,N(-2,
5
5
)
,若圓C的圓心與橢圓的右焦點重合,圓的半徑恰好等于橢圓的短半軸長,已知點A(x,y)為圓C上的一點.
(1)求橢圓的標準方程和圓的標準方程;
(2)求
AC
AO
+2|
AC
-
AO
|
(O為坐標原點)的取值范圍;
(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在坐標原點,焦點在x軸上,橢圓上點P(3
2
,4)
到兩焦點的距離之和是12,則橢圓的標準方程是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在坐標原點,焦點在x軸上,焦距為6
3
,且橢圓上一點到兩個焦點的距離之和為12,則橢圓的方程為
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在坐標原點O,焦點在x軸上,離心率為
2
2
,坐標原點O到過右焦點F且斜率為1的直線的距離為
2
2

(1)求橢圓的方程;
(2)設過右焦點F且與坐標軸不垂直的直線l交橢圓于P、Q兩點,在線段OF上是否存在點M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案