如圖所示,已知四邊形ABCD、EADMMDCF都是邊長為a的正方形,點P、Q分別是EDAC的中點,求:

1)異面直線PMFQ所成的角;

2)四面體P-EFB的體積;

3)異面直線PMFQ的距離.

答案:
解析:

解:(1)將已知圖形以AD、DC、DM為相鄰的三條棱補成如圖所示的正方體,易知BFMP,連結BQ,則ÐQFB即為異面直線PMFQ所成的角,由正方體的性質知DBFQ是直角三角形,由,知ÐQFB=30°,即所求的為30°;

(2)由于DP=PE,所以四面體P-EBF的體積等于四面體D-EBF的一半,所以所求的體積;

(3)由(1)異面直線PMFQ的距離即為MP到平面BFQ的距離,也即M點到平面BFD的距離,設這一距離為d,


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:044

如圖所示,已知四邊形ABCD的對角線互相平分,點O是對角線ACBD的交點.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

如圖所示,已知四邊形ABCD的對角線互相平分,點O是對角線ACBD的交點.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源:黃岡中學 高一數(shù)學(下冊)、第五章 平面向量單元(5.1~5.5)測試卷 題型:044

如圖所示,已知四邊形OADB是以向量,為邊的平行四邊形,其中.試以向量a,b為一組基底,表示出向量、

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江西贛州四所重點中學高三上學期期末聯(lián)考文數(shù)學試卷(解析版) 題型:解答題

如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點。

(Ⅰ)求證:平面FGH⊥平面AEB;

(Ⅱ)在線段PC上是否存在一點M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案