如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥平面ABCD,SD=AD=2,請建立空間直角坐標系解決下列問題.
(1)求證:;(2)求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面是直角梯形,,,且,頂點在底面內(nèi)的射影恰好落在的中點上.
(1)求證:;
(2)若,求直線與所成角的 余弦值;
(3)若平面與平面所成的二面角為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.
(1)求證:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值為-,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.
(Ⅰ)求異面直線EF與BC所成角的大;
(Ⅱ)若二面角A-BF-D的平面角的余弦值為,求AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,,,,點、分別為、的中點.
(1)求證:平面;
(2)求直線和平面所成角的正弦值;
(3)能否在上找到一點,使得平面?若能,請指出點的位置,并加以證明;若不能,請說明理由 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com