如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.
(1)求證:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值為-,求的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正方形ABCD的邊長為2,AC∩BD=O.將正方形ABCD沿對角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.
(1)當(dāng)a=2時(shí),求證:AO⊥平面BCD.
(2)當(dāng)二面角A-BD-C的大小為120°時(shí),求二面角A-BC-D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐的底面是正方形,底面,是上的任意一點(diǎn).
(1)求證:平面平面;
(2)當(dāng)時(shí),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥平面ABCD,SD=AD=2,請建立空間直角坐標(biāo)系解決下列問題.
(1)求證:;(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點(diǎn).
(1)求異面直線與所成角的大;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA="AD=1,AB=2," ,.
(1)求證:平面平面;
(2)求三棱錐D-PAC的體積;
(3)求直線PC與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)如圖:四棱錐P—ABCD中,底面ABCD
是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(1)證明:無論點(diǎn)E在BC邊的何處,都有PE⊥AF;
(2)當(dāng)BE等于何值時(shí),PA與平面PDE所成角的大小為45°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com