如圖,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)是在軸上投影,為上一點(diǎn),且.當(dāng)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為曲線. 過(guò)點(diǎn)且傾斜角為的直線交曲線于兩點(diǎn).
(1)求曲線的方程;
(2)若點(diǎn)F是曲線的右焦點(diǎn)且,求的取值范圍.
(1)
(2)
解析試題分析:解:(1)設(shè)點(diǎn)M的坐標(biāo)是,的坐標(biāo)是,因?yàn)辄c(diǎn)是在軸上投影,M為上一點(diǎn),且,所以,且,∵在圓上,∴,整理得. 即的方程是.
(2)如下圖,直線交曲線于兩點(diǎn),且.
由題意得直線的方程為.
由,消去得.
由解得.
又,.
設(shè),則,
.
.
.
又由橢圓方程可知,
,
,
,
.
因,,
,故或,
又,故.
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評(píng):主要是考查了橢圓方程以及直線與橢圓位置關(guān)系的聯(lián)立方程設(shè)而不求的解題思想的運(yùn)用,屬于難度題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線:的距離為.設(shè)為直線上的點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)直線是曲線的一條切線,.
(Ⅰ)求切點(diǎn)坐標(biāo)及的值;
(Ⅱ)當(dāng)時(shí),存在,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),過(guò)點(diǎn)的直線與拋物線交于A,B兩點(diǎn),
(1)寫出拋物線的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓和圓:,過(guò)橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.
(1)(。┤魣AO過(guò)橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點(diǎn)M,N,問(wèn)當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),是否為定值?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn).當(dāng)直線經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)時(shí),其傾斜角恰為.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),
記△的面積為,△(為原點(diǎn))的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心及的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),設(shè)點(diǎn)是橢圓上任一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左頂點(diǎn),過(guò)右焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓交于點(diǎn),與軸交于點(diǎn),過(guò)原點(diǎn)與平行的直線與橢圓交于點(diǎn),求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com