【題目】已知是定義域?yàn)?/span>上的函數(shù),若對任意的實(shí)數(shù),都有:成立,當(dāng)且僅當(dāng)時取等號,則稱函數(shù)是上的凸函數(shù),凸函數(shù)具有以下性質(zhì):對任意的實(shí)數(shù),都有:成立,當(dāng)且僅當(dāng)時取等號,設(shè)
(1)求證:是上的凸函數(shù)
(2)設(shè),,利用凸函數(shù)的定義求的最大值
(3)設(shè)是三個內(nèi)角,利用凸函數(shù)性質(zhì)證明
【答案】(1)證明見解析;(2);(3)證明見解析.
【解析】
(1)根據(jù)定義證明 成立,利用三角函數(shù)和差化積公式進(jìn)行證明.
(2)根據(jù)定義求最值直接套入凸函數(shù)的定義式中,易得函數(shù)的最大值.
(3)直接利用凸函數(shù)性質(zhì)證明不等式即可,注意到中,,可證得結(jié)論成立.
(1)設(shè),,則 ,
又
,又,
當(dāng)且僅當(dāng)時,,上式取得等號,
即成立,其中,,
上的凸函數(shù).
(2)設(shè),,
是上的凸函數(shù);,,
由凸函數(shù)的定義得到,
的最大值為.
(3)在中,,
由凸函數(shù)的性質(zhì)得到.
所以原不等式得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查觀眾對電視劇《風(fēng)箏》的喜愛程度,某電視臺舉辦了一次現(xiàn)場調(diào)查活動.在參加此活動的甲、乙兩地觀眾中,各隨機(jī)抽取了8名觀眾對該電視劇評分做調(diào)查(滿分100分),被抽取的觀眾的評分結(jié)果如圖所示
(Ⅰ)計算:①甲地被抽取的觀眾評分的中位數(shù);
②乙地被抽取的觀眾評分的極差;
(Ⅱ)用頻率估計概率,若從乙地的所有觀眾中再隨機(jī)抽取4人進(jìn)行評分調(diào)查,記抽取的4人評分不低于90分的人數(shù)為,求的分布列與期望;
(Ⅲ)從甲、乙兩地分別抽取的8名觀眾中各抽取一人,在已知兩人中至少一人評分不低于90分的條件下,求乙地被抽取的觀眾評分低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市小型機(jī)動車駕照“科二”考試中共有5項(xiàng)考查項(xiàng)目,分別記作①,②,③,④,⑤.
(1)某教練將所帶10名學(xué)員“科二”模擬考試成績進(jìn)行統(tǒng)計(如表所示),并計算從恰有2項(xiàng)成績不合格的學(xué)員中任意抽出2人進(jìn)行補(bǔ)測(只測不合格的項(xiàng)目),求補(bǔ)測項(xiàng)目種類不超過3()項(xiàng)的概率.
(2)“科二”考試中,學(xué)員需繳納150元的報名費(fèi),并進(jìn)行1輪測試(按①,②,③,④,⑤的順序進(jìn)行);如果某項(xiàng)目不合格,可免費(fèi)再進(jìn)行1輪補(bǔ)測;若第1輪補(bǔ)測中仍有不合格的項(xiàng)目,可選擇“是否補(bǔ)考”;若補(bǔ)考則需繳納300元補(bǔ)考費(fèi),并獲得最多2輪補(bǔ)測機(jī)會,否則考試結(jié)束;每1輪補(bǔ)測都按①,②,③,④,⑤的順序進(jìn)行,學(xué)員在任何1輪測試或補(bǔ)測中5個項(xiàng)目均合格,方可通過“科二”考試,每人最多只能補(bǔ)考1次,某學(xué)院每輪測試或補(bǔ)考通過①,②,③,④,⑤各項(xiàng)測試的概率依次為,且他遇到“是否補(bǔ)考”的決斷時會選擇補(bǔ)考.
①求該學(xué)員能通過“科二”考試的概率;
②求該學(xué)員繳納的考試費(fèi)用的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中,側(cè)面是邊長為的正三角形,且與底面垂直,底面是的菱形, 為的中點(diǎn), 為的中點(diǎn).
(1)求證: ;
(2)求與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( )是偶函數(shù).
(1)求的值;
(2)設(shè)函數(shù),其中.若函數(shù)與的圖象有且只有一個交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐,底面是平行四邊形,,底面,,,,分別為,的中點(diǎn),為線段的中點(diǎn).
(1)求證:面;
(2)求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一系列對應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時,方程 恰有兩個不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),且=10
(1)求的解析式;
(2)判斷函數(shù)在上的單調(diào)性,并加以證明.
(3)函數(shù)在[-3,0)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中錯誤的是( )
A.命題“若,則”的逆否命題是“若,則”
B.“”是“”的充分條件
C.命題“若,則方程有實(shí)根”的逆命題是真命題
D.命題“若,則且”的否命題是“若,則或”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com