(Ⅰ)已知雙曲線C與雙曲線有相同的漸近線,且一條準(zhǔn)線為,求雙曲線C的方程;
(Ⅱ)已知圓截軸所得弦長為6,圓心在直線上,并與軸相切,求該圓的方程.
(Ⅰ);(Ⅱ)

試題分析:(Ⅰ)由題設(shè)雙曲線C的方程為,則,
∴ 雙曲線C的方程為
(Ⅱ)由題設(shè)圓的方程為,則

∴ 圓的方程為
點評:已知漸近線方程為,則可設(shè)漸近線方程為;與雙曲線共漸近線的雙曲線方程可設(shè)為:。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓錐曲線的離心率e為方程的兩根,則滿足條件的圓錐曲線的條數(shù)為      (    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)過橢圓的一個焦點的直線交橢圓于兩點,求面積的最大值.(為坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,若其長軸在軸上.焦距為,則等于___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系中,曲線的參數(shù)方程為,以軸的正半軸為極軸建立極坐標(biāo)系,曲線在極坐標(biāo)系中的方程為.若曲線有兩個不同的交點,則實數(shù)的取值范圍是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,已知橢圓(a>b>0)的離心率,過點 和的直線與原點的距離為

(1)求橢圓的方程;
(2)已知定點,若直線與橢圓交于、兩   點.問:是否存在的值,
使以為直徑的圓過點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

斜率為2的直線經(jīng)過拋物線的焦點,與拋物線交與A、B兩點,則=     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的一個焦點與拋物線的焦點重合,P為橢圓與拋物線的一個公共點,且|PF|=2,傾斜角為的直線過點.
(1)求橢圓的方程;
(2)設(shè)橢圓的另一個焦點為,問拋物線上是否存在一點,使得關(guān)于直線對稱,若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在ABC中,C=90°,AC="b," BC="a," P為三角形內(nèi)的一點,且
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系求出P的坐標(biāo);
(Ⅱ)求證:│PA│2+│PB│2=5│PC│
(Ⅲ)若a+2b=2,求以PA,PB,PC分別為直徑的三個圓的面積之和的最小值,并求出此時的b值.

查看答案和解析>>

同步練習(xí)冊答案