【題目】已知三棱錐 外接球的表面積為32 , ,三棱錐 的三視圖如圖所示,則其側(cè)視圖的面積的最大值為( )

A.4
B.
C.8
D.

【答案】A
【解析】由外接球的表面積,可知三棱錐外接球半徑 ;據(jù)三視圖可得 ,取 的中點 ,可證 為外接球的球心,且 為外接球的直徑且 ,所以 .側(cè)視圖的高為 ,側(cè)視圖的底等于底面 的斜邊 上的高,設為 ,則求側(cè)視圖的面積的最大值轉(zhuǎn)化為求 的最大值,當 中點 ,與 的垂足重合時, 有最大值,即三棱錐的側(cè)視圖的面積的最大值為
故答案為:A.
根據(jù)外接球的表面積得出外接球半徑,由三視圖不難得出SC⊥面ABC,取SA的中點O,可證O為外接球的球心,則SA為外接球直徑,根據(jù)勾股定理得出SC,設底面ABC的斜邊AC的高為a,則求出a的最大值即可得到側(cè)視圖面積的最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若方程kx-ln x=0有兩個實數(shù)根,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系 中,直線 的參數(shù)方程為 為參數(shù)),直線 的參數(shù)方程為 為參數(shù)),設 的交點為 ,當 變化時, 的軌跡為曲線 .
(1)寫出 的普遍方程及參數(shù)方程;
(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線 的極坐標方程為 , 為曲線 上的動點,求點 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系 中,以原點 為極點,以 軸正半軸為極軸,圓 的極坐標方程為
(1)將圓 的極坐標方程化為直角坐標方程;
(2)過點 作斜率為1直線 與圓 交于 兩點,試求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于橢圓 ,有如下性質(zhì):若點 是橢圓上的點,則橢圓在該點處的切線方程為 .利用此結(jié)論解答下列問題.
(Ⅰ)求橢圓 的標準方程;
(Ⅱ)若動點 在直線 上,經(jīng)過點 的直線 與橢圓 相切,切點分別為 .求證直線 必經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 與直線 相切.
(1)若直線 與圓 交于 兩點,求 ;
(2)設圓 軸的負半軸的交點為 ,過點 作兩條斜率分別為 的直線交圓 兩點,且 ,試證明直線 恒過一定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且橢圓 過點 ,直線 過橢圓 的右焦點 且與橢圓 交于 兩點.
(Ⅰ)求橢圓 的標準方程;
(Ⅱ)已知點 ,求證:若圓 與直線 相切,則圓 與直線 也相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若f(x)的圖象與直線y=kx有兩個不同的交點,則實數(shù)k的取值范圍

查看答案和解析>>

同步練習冊答案