(矩陣與變換)求矩陣M=
12
21
的特征值及其對應的特征向量.
分析:先求出矩陣M的特征多項式,進而可求矩陣M的特征值.利用方程組可求相應的特征向量.
解答:解:矩陣M的特征多項式為f(λ)=
.
λ-1-2
-2λ-1
.
=(λ-1)(λ-1)-4=λ2-2λ-3.
令f(λ)=0,得矩陣M的特征值為-1和3.
當λ=-1時,聯(lián)立
-2x-2y=0
-2x-2y=0
,解得x+y=0
所以矩陣M的屬于特征值-1的一個特征向量為
1
-1

當λ=3時,聯(lián)立
2x-2y=0
-2x+2y=0
,解得x=y
所以矩陣M的屬于特征值3的一個特征向量為
1
1
點評:本題考查矩陣的性質和應用、特征值與特征向量的計算,解題時要注意特征值與特征向量的計算公式的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A(選修4-1:幾何證明選講)
如圖,AB是⊙O的直徑,C,F(xiàn)是⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D,連接CF交AB于點E.
求證:DE2=DB•DA.
B(選修4-2:矩陣與變換)
求矩陣
21
12
的特征值及對應的特征向量.
C(選修4-4:坐標系與參數(shù)方程)
已知曲線C的極坐標方程是ρ=2sinθ,直線l的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(t為參數(shù)).
(Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)設直線l與x軸的交點是M,N是曲線C上一動點,求MN的最大值.
D(選修4-5:不等式選講)
已知m>0,a,b∈R,求證:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(“選修4-2矩陣與變換”)
已知y=f(x)的圖象(如圖1)經A=
.
ab
cd
.
作用后變換為曲線C(如圖2).
(Ⅰ)求矩陣A;
(Ⅱ)求矩陣A的特征值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-2:矩陣與變換)
已知矩陣A=
.
33
cd
.
,若矩陣A屬于特征值6的一個特征向量為
α1
=
.
1
1
.
,屬于特征值1的一個特征向量為
α2
=
.
3
-2
.
.求矩陣A,并寫出A的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內.
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,求線段AE的長.
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對應的一個特征向量α1=
1
1
,特征值λ2=-1及其對應的一個特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標系與參數(shù)方程)
以平面直角坐標系的原點O為極點,x軸的正半軸為極軸,建立極坐標系(兩種坐標系中取相同的單位長度),已知點A的直角坐標為(-2,6),點B的極坐標為(4,
π
2
)
,直線l過點A且傾斜角為
π
4
,圓C以點B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標方程.
D.(選修4-5:不等式選講)
設a,b,c,d都是正數(shù),且x=
a2+b2
,y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-2:矩陣與變換)
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為α1=
1
1
,屬于特征值1的一個特征向量為α2=
3
-2

①求矩陣A;②求直線y=x+2在矩陣A的作用下得到的曲線方程.

查看答案和解析>>

同步練習冊答案