【題目】我們把定義域為且同時滿足以下兩個條件的函數(shù)稱為函數(shù):(1)對任意的,總有;(2)若,,則有成立,下列判斷正確的是(

A.函數(shù),則

B.函數(shù),則上為增函數(shù)

C.函數(shù)上是函數(shù)

D.函數(shù)上是函數(shù)

【答案】ABD

【解析】

利用函數(shù)的定義對每一個命題逐一分析,必須同時滿足函數(shù)的兩個條件,才是函數(shù),否則就是假命題.

A.因為對任意的,總有,所以,又因為,,則有成立,所以所以,綜合得,所以若函數(shù),則,是真命題;

B.設(shè)所以

因為

所以若函數(shù),則上為增函數(shù),是真命題;

C.顯然函數(shù)滿足條件(1),如果所以;如果設(shè)所以,所以函數(shù)上是函數(shù)”是假命題;

D.顯然,所以滿足條件(1),,所以滿足條件(2.所以函數(shù)上是函數(shù)是真命題.

故選:ABD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下判斷正確的是 ( )

A. 函數(shù)上的可導(dǎo)函數(shù),則為函數(shù)極值點(diǎn)的充要條件

B. 若命題為假命題,則命題與命題均為假命題

C. ,則的逆命題為真命題

D. 中,“”是“”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從原點(diǎn)向圓 作兩條切線,切點(diǎn)分別為,,記切線,的斜率分別為,

(Ⅰ)若圓心,求兩切線,的方程;

(Ⅱ)若,求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x0,f(x)=-x2+ax.

(1)a=-2,求函數(shù)f(x)的解析式;

(2)若函數(shù)f(x)R上的單調(diào)減函數(shù),

a的取值范圍;

若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等比數(shù)列,滿足,成等差數(shù)列.

1)求的通項公式;

(2)設(shè),數(shù)列的前項和為 , ,求正整數(shù)的值,使得對任意均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其圖像與軸切于非原點(diǎn)的一點(diǎn),且該函數(shù)的極小值是,那么切點(diǎn)坐標(biāo)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲量巨大,已發(fā)現(xiàn)礦種76種,探明儲量39種,其中釩、鈦資源儲量分別占全國的63%和93%,占全球的11%和35%,因此其素有“釩鈦之都”的美稱.攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系為:當(dāng)時,的二次函數(shù);當(dāng)時,.測得部分?jǐn)?shù)據(jù)如下表:

(單位:克)

0

2

6

10

8

8

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)求該新合金材料的含量為何值時產(chǎn)品的性能達(dá)到最佳.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=,BAD=90°

求證:ADBC;

求異面直線BCMD所成角的余弦值;

(Ⅲ)求直線CD與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)證明: .

查看答案和解析>>

同步練習(xí)冊答案