(本小題滿分13分) 設(shè)數(shù)列滿足;
(1)當(dāng)時(shí),求并由此猜測(cè)的一個(gè)通項(xiàng)公式;
(2)當(dāng)時(shí),證明對(duì)所有的,
(i)
(ii)。          
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知數(shù)列的前n項(xiàng)和與通項(xiàng)之間滿足關(guān)系
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)
(III)若,求的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列滿足:,的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令bn=(),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
將數(shù)列中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表

 
   
     
………………………
記表中的第一列數(shù)構(gòu)成的數(shù)列為,為數(shù)列的前項(xiàng)和,且滿足
(1)證明:;
(2)求數(shù)列的通項(xiàng)公式;
(3)上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)時(shí),求上表中第行所有項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題9分)給出下面的數(shù)表序列:
表1
表2
表3

1
1   3
1   3   5
 
 
4
4   8
 
 
 
12
 
   其中表行,第1行的個(gè)數(shù)是1,3,5,…,,從第2行起,每行中的每個(gè)數(shù)都等于它肩上的兩數(shù)之和。
(1)寫出表4,驗(yàn)證表4各行中數(shù)的平均數(shù)按從上到下的順序構(gòu)成等比數(shù)列,并將結(jié)論推廣到表(不要求證明)
(2)每個(gè)數(shù)表中最后一行都只有一個(gè)數(shù),它們構(gòu)成數(shù)列1,4,12,…,記此數(shù)列為,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185043325310.png" style="vertical-align:middle;" />,當(dāng)時(shí),,且對(duì)任意的,等式成立.若數(shù)列滿足,且,則的值為(    )                           
A  4021     B  4020     C  4018      D 4019 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿分14分)已知等比數(shù)列的公比為,首項(xiàng)為,其前項(xiàng)的和為.?dāng)?shù)列的前項(xiàng)的和為, 數(shù)列的前項(xiàng)的和為
(Ⅰ)若,,求的通項(xiàng)公式;(Ⅱ)①當(dāng)為奇數(shù)時(shí),比較的大小; ②當(dāng)為偶數(shù)時(shí),若,問(wèn)是否存在常數(shù)(與n無(wú)關(guān)),使得等式恒成立,若存在,求出的值;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}滿足則它的前10項(xiàng)的和S10等于(  )
A.95B.135C.138D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前n項(xiàng)和為,且 =6,=4,則公差d等于
A.1B.C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案