(10分)一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1、2、3、4,F(xiàn)從盒子中隨機抽取卡片.
(I)若一次抽取3張卡片,求3張卡片上數(shù)字之和大于7的概率;
(II)若第一次抽1張卡片,放回后再抽取1張卡片,求兩次抽取中至少一次抽到數(shù)字3的概率.

(Ⅰ)P(A)=0.5;(Ⅱ)P(B)= 。

解析試題分析:(Ⅰ)由題意知本題是一個古典概型,
設A表示事件“抽取3張卡片上的數(shù)字之和大于7”,  ……1分
∵任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果是{(1、2、3),(1、2、4),(1、3、4),(2、3、4)}共4個,        ……3分
其中數(shù)字之和大于7的是(1、3、4),(2、3、4),∴P(A)=0.5    ……5分
(Ⅱ)設B表示事件“至少一次抽到3”,  ……6分
∵每次抽1張,連續(xù)抽取兩張全部可能的基本結(jié)果有:
(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16個.    ……8分
事件B包含的基本結(jié)果有(1、3)(2、3)(3、1)(3、2)(3、3)(3、4)(4、3),共7個基本結(jié)果.∴所求事件的概率為P(B)=       ……10分
考點:本題主要考查古典概型的概率計算。
點評:中檔題,古典概型概率的計算,關鍵是明確基本事件總數(shù)及導致事件發(fā)生的基本事件數(shù),此類問題,可借助于“樹圖法”不重不漏地寫出各個基本事件。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

一袋中有6個黑球,4個白球.
(1)依次取出3個球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;
(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;
(3)有放回地依次取出3球,求取到白球個數(shù)X的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)因金融危機,某公司的出口額下降,為此有關專家提出兩種促進出口的方案,每種方案都需要分兩年實施.若實施方案一,預計第一年可以使出口額恢復到危機前的1.0倍、0.9倍、0.8倍的概率分別為0.3、0.3、0.4;第二年可以使出口額為第一年的1.25倍、1.0倍的概率分別是0.5、0.5.若實施方案二,預計第一年可以使出口額恢復到危機前的1.2倍、l.0倍、0.8倍的概率分別為0.2、0.3、0.5;第二年可以使出口額為第一年的1.2倍、1.0倍的概率分別是0.4、0.6.實施每種方案第一年與第二年相互獨立.令ζ=1,2)表示方案實施兩年后出口額達到危機前的倍數(shù)。
(Ⅰ)寫出、的分布列;
(Ⅱ)實施哪種方案,兩年后出口額超過危機前出口額的概率更大?
(Ⅲ)不管哪種方案,如果實施兩年后出口額達不到、恰好達到、超過危機前出口額,預計利潤分別為10萬元、15萬元、20萬元,問實施哪種方案的平均利潤更大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
設a、b、c分別是先后擲一枚質(zhì)地均勻的正方體骰子三次得到的點數(shù).
(1)求使函數(shù)在R上不存在極值點的概率;
(2)設隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

二十世紀50年代,日本熊本縣水俁市的許多居民都患了運動失調(diào)、四肢麻木等癥狀,人們把它稱為水俁病.經(jīng)調(diào)查發(fā)現(xiàn)一家工廠排出的廢水中含有甲基汞,使魚類受到污染.人們長期食用含高濃度甲基汞的魚類引起汞中毒. 引起世人對食品安全的關注.《中華人民共和國環(huán)境保護法》規(guī)定食品的汞含量不得超過1.00ppm.
羅非魚是體型較大,生命周期長的食肉魚,其體內(nèi)汞含量比其他魚偏高.現(xiàn)從一批羅非魚中隨機地抽出15條作樣本,經(jīng)檢測得各條魚的汞含量的莖葉圖(以小數(shù)點前一位數(shù)字為莖,小數(shù)點后一位數(shù)字為葉)如下:
 
(Ⅰ)若某檢查人員從這15條魚中,隨機地抽出3條,求恰有1條魚汞含量超標的概率;
(Ⅱ)以此15條魚的樣本數(shù)據(jù)來估計這批魚的總體數(shù)據(jù).若從這批數(shù)量很大的魚中任選3條魚,記ξ表示抽到的魚汞含量超標的條數(shù),求ξ的分布列及Eξ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個盒子中有5只同型號的燈泡,其中有3只合格品,2只不合格品,F(xiàn)在從中依次取出2只,設每只燈泡被取到的可能性都相同,請用“列舉法”解答下列問題:
(1)求第一次取到不合格品,且第二次取到的是合格品的概率;
(2)求至少有一次取到不合格品的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;    
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙、丙三人獨立地對某一技術難題進行攻關。甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.
(1)求這一技術難題被攻克的概率;
(2)若該技術難題末被攻克,上級不做任何獎勵;若該技術難題被攻克,上級會獎勵萬元。獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金萬元;若只有2人攻克,則獎金獎給此二人,每人各得萬元;若三人均攻克,則獎金獎給此三人,每人各得萬元。設甲得到的獎金數(shù)為X,求X的分布列和數(shù)學期望。(本題滿分12分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)一口袋中裝有編號為的七個大小相同的小球,現(xiàn)從口袋中一次隨機抽取兩球,每個球被抽到的概率是相等的,用符號()表示事件“抽到的兩球的編號分別為”。
(Ⅰ)總共有多少個基本事件?用列舉法全部列舉出來;
(Ⅱ)求所抽取的兩個球的編號之和大于且小于的概率。

查看答案和解析>>

同步練習冊答案