如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)根據(jù)題中的已知條件列有關(guān)的方程,求出,然后根據(jù)離心率求出,最后再根據(jù)、、三者之間的關(guān)系求出的值,從而確定橢圓的方程;(Ⅱ)先設點的坐標,然后根據(jù)已知條件將直線的方程用進行表示,再聯(lián)立直線與橢圓的方程,結(jié)合韋達定理將表示為含為代數(shù)式,然后再利用不等式的性質(zhì)求出的取值范圍.
試題解析:(Ⅰ)設F2(c,0),則=,所以c=1.
因為離心率e=,所以a=.
所以橢圓C的方程為.
(Ⅱ) 當直線AB垂直于x軸時,直線AB方程為x=-,此時P(,0)、Q(,0),.
當直線AB不垂直于x軸時,設直線AB的斜率為k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
由 得(x1+x2)+2(y1+y2)=0,
則-1+4mk=0,故k=.
此時,直線PQ斜率為,PQ的直線方程為.即.
聯(lián)立 消去y,整理得.
所以,.
于是(x1-1)(x2-1)+y1y2
.
令t=1+32m2,1<t<29,則.
又1<t<29,所以.
綜上,的取值范圍為.
考點:橢圓的方程、平面向量的數(shù)量積、韋達定理
科目:高中數(shù)學 來源: 題型:解答題
設是拋物線上相異兩點,到y(tǒng)軸的距離的積為且.
(1)求該拋物線的標準方程.
(2)過Q的直線與拋物線的另一交點為R,與軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知定點A(-2,0)、B(2,0),異于A、B兩點的動點P滿足,其中k1、k2分別表示直線AP、BP的斜率.
(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點B的任意一點,直線AN與(I)中軌跡E交予點Q,設直線QB與以NB為直徑的圓的一個交點為M(異于點B),點C(1,0),求證:|CM|·|CN| 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左、右焦點分別為、,P為橢圓 上任意一點,且的最小值為.
(1)求橢圓的方程;
(2)動圓與橢圓相交于A、B、C、D四點,當為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓的左、右焦點分別為和,且橢圓過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點,試判斷的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知一條曲線在軸右邊,上每一點到點的距離減去它到軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過點M的直線與曲線C有兩個交點,且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,A,B是橢圓的兩個頂點, ,直線AB的斜率為.求橢圓的方程;(2)設直線平行于AB,與x,y軸分別交于點M、N,與橢圓相交于C、D,
證明:的面積等于的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com