已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是(-5,0),(5,0),且AC,BC所在直
線的斜率之積等于m(m≠0),求頂點(diǎn)C的軌跡.
當(dāng)時(shí),點(diǎn)C的軌跡是橢圓,或者圓,并除去兩點(diǎn)
當(dāng)時(shí),點(diǎn)C的軌跡是雙曲線,并除去兩點(diǎn)……
解析試題分析:該題考察斜率等基礎(chǔ)知識,考察學(xué)生基本運(yùn)算能力,設(shè)點(diǎn),用斜率公式表示,,然后先根據(jù)已知列方程,其次化簡,再根據(jù)討論軌跡類型(把不滿足條件的點(diǎn)去掉,或把遺漏的點(diǎn)補(bǔ)上).
試題解析:設(shè)點(diǎn)C的坐標(biāo)為,由已知,得
直線AC的斜率,
直線BC的斜率,
由題意得,所以
即 7分
當(dāng)時(shí),點(diǎn)C的軌跡是橢圓,或者圓,并除去兩點(diǎn)
當(dāng)時(shí),點(diǎn)C的軌跡是雙曲線,并除去兩點(diǎn) 10分
考點(diǎn):1、斜率計(jì)算公式;2、曲線方程的求法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
矩形的中心在坐標(biāo)原點(diǎn),邊與軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線與,與,與的交點(diǎn)依次為.
(1)以為長軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段的(等分點(diǎn)從左向右依次為,線段的等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:,過點(diǎn)作圓的切線交橢圓于A,B兩點(diǎn)。
(1)求橢圓的焦點(diǎn)坐標(biāo)和離心率;
(2)求的取值范圍;
(3)將表示為的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)把的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求與交點(diǎn)的極坐標(biāo)().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,且.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且斜率不為0的直線交橢圓于兩點(diǎn).試問軸上是否存在異于的定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線焦點(diǎn)為,直線經(jīng)過點(diǎn)且與拋物線相交于,兩點(diǎn)
(Ⅰ)若線段的中點(diǎn)在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某跳水運(yùn)動(dòng)員在一次跳水訓(xùn)練時(shí)的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時(shí)跳水曲線應(yīng)在離起跳點(diǎn)m()時(shí)達(dá)到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標(biāo)系.
(1)當(dāng)=1時(shí),求跳水曲線所在的拋物線方程;
(2)若跳水運(yùn)動(dòng)員在區(qū)域內(nèi)入水時(shí)才能達(dá)到壓水花的訓(xùn)練要求,求達(dá)到壓水花的訓(xùn)練要求時(shí)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn),,為動(dòng)點(diǎn),且直線與直線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)的直線與曲線相交于不同的兩點(diǎn),.若點(diǎn)在軸上,且,求點(diǎn)的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com