已知函數(shù)和.其中.
(1)若函數(shù)與的圖像的一個公共點(diǎn)恰好在軸上,求的值;
(2)若和是方程的兩根,且滿足,證明:當(dāng)時,.
(1);(2)證明過程詳見解析.
解析試題分析:本題考查一次函數(shù)與二次函數(shù)圖像的關(guān)系以及作差法比較大小證明不等式問題,考查學(xué)生分析問題解決問題的能力.第一問,先求與軸的交點(diǎn),由已知得此交點(diǎn)同時也在圖像上,所以代入到解析式中,解出的值;第二問,作差法比較與的大小,再用作差法比較與的大小.
試題解析:(1)設(shè)函數(shù)圖象與軸的交點(diǎn)坐標(biāo)為,
又∵點(diǎn)也在函數(shù)的圖象上,∴.
而,∴.(4分)
(2)由題意可知.
∵,∴,
∴當(dāng)時,,即.(8分)
又,
,且,∴,∴,
綜上可知,.(13分)
考點(diǎn):1.作差法比較大。2.一次函數(shù)、二次函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=,=,若曲線和曲線都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若時,≤,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某生態(tài)園欲把一塊四邊形地辟為水果園,其中, ,.若經(jīng)過上一點(diǎn)和上一點(diǎn)鋪設(shè)一條道路,且將四邊形分成面積相等的兩部分,設(shè).
(1)求的關(guān)系式;
(2)如果是灌溉水管的位置,為了省錢,希望它最短,求的長的最小值;
(3)如果是參觀路線,希望它最長,那么的位置在哪里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及的表達(dá)式;
(2)隔熱層修建多厚時,總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求的值;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù).若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/3/cu2t03.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量(升)關(guān)于行駛速度(千米/每小時)的函數(shù)解析式可以表示為,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com