統(tǒng)計(jì)表明:某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/每小時(shí))的函數(shù)解析式可以表示為,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車(chē)以40千米/小時(shí)的速度行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車(chē)以多大速度行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

(1)17.5;(2)80,11.2.

解析試題分析:(1)求從甲地到乙地要耗油多少升,需要知道行駛時(shí)間和每小時(shí)的耗油量,行駛時(shí)間可由路程和行駛速度得出,而每小時(shí)耗油量是行駛速度的函數(shù),可由條件中的函數(shù)關(guān)系式求出;(2)設(shè)速度為千米/小時(shí),與(1)相同,可分別求出行駛時(shí)間和每小時(shí)的耗油量,則甲地到乙地耗油油量是速度的函數(shù),列出函數(shù)關(guān)系式,再用導(dǎo)數(shù)求函數(shù)的最值.
試題解析:(1)當(dāng)千米/小時(shí)時(shí),汽車(chē)從甲地到乙地行駛了小時(shí),要耗油(升)
所以,當(dāng)汽車(chē)以40千米/小時(shí)的速度行駛時(shí),從甲地到乙地要耗油17.5升
(2)設(shè)速度為千米/小時(shí),汽車(chē)從甲地到乙地行駛了小時(shí),設(shè)耗油量為升,依題意得 
  令,得
當(dāng)時(shí),,是減函數(shù),當(dāng)時(shí),, 是增函數(shù)∴當(dāng)時(shí),取得極小值
此時(shí) (升)
答:當(dāng)汽車(chē)以80千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙耗油量少,最少為11.2升
考點(diǎn):函數(shù)的應(yīng)用,與導(dǎo)數(shù)與函數(shù)的單調(diào)性最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=a|x|+ (a>0,a≠1)
(1)若a>1,且關(guān)于x的方程f(x)=m有兩個(gè)不同的正數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=" f(" x),x∈[ 2,+∞),滿(mǎn)足如下性質(zhì):若存在最大(。┲,則最大(。┲蹬ca無(wú)關(guān).試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).其中
(1)若函數(shù)的圖像的一個(gè)公共點(diǎn)恰好在軸上,求的值;
(2)若是方程的兩根,且滿(mǎn)足,證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在上的函數(shù),當(dāng)時(shí),,且對(duì)任意的 ,有,
(Ⅰ)求證:;
(Ⅱ)求證:對(duì)任意的,恒有;
(Ⅲ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)   是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在半徑為、圓心角為的扇形的弧上任取一點(diǎn),作扇形的內(nèi)接矩形,使點(diǎn)上,點(diǎn)上,設(shè)矩形的面積為,

(Ⅰ)按下列要求求出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式;
(Ⅱ)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某公司生產(chǎn)品牌服裝的年固定成本是10萬(wàn)元,每生產(chǎn)千件,須另投入2 7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷(xiāo)售完,每千件的銷(xiāo)售收入為R(x)萬(wàn)元,且 
(1)寫(xiě)出年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲利潤(rùn)最大?(注:年利潤(rùn)=年銷(xiāo)售收入 年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是常數(shù))在區(qū)間上有
(1)求的值;
(2)若當(dāng)時(shí),求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dd/9/1hxtl4.png" style="vertical-align:middle;" />,且.設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線(xiàn)軸的垂線(xiàn),垂足分別為

(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);
(2)問(wèn):是否為定值?若是,則求出該定值,若不是,則說(shuō)明理由;
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案