(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.

x=0或y=3或

解析試題分析:
解析:若直線l的斜率不存在,則直線l的方程為x=0,滿足條件
②⑤當直線l的斜率存在,不妨設(shè)ly=kx+3,代入y2 =2x,得:k2x2 +(6k-2) x+9=0
有條件知,當k=0時,即:直線y=3與拋物線有一個交點
k≠0時,由△= (6k-2)2 -4×9×k2=0,解得:k=,則直線方程為
故滿足條件的直線方程為:x=0或y=3或
考點:直線方程的求解
點評:易錯點就是考慮情況不全面,造成的丟解的問題,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求由拋物線與它在點和點的切線所圍成的區(qū)域的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,右焦點為(,0),斜率為1的直線與橢圓G交與A、B兩點,以AB為底邊作等腰三角形,頂點為
(1)求橢圓G的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓C:(.

(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設(shè)過定點的直線與橢圓C交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率k的取值范圍;
(3)如圖,過原點任意作兩條互相垂直的直線與橢圓()相交于四點,設(shè)原點到四邊形一邊的距離為,試求滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C:的左焦點為F,過點F的直線與橢圓C相交于A,B兩點,直線l的傾斜角為60o,.
求橢圓C的離心率;
如果|AB|=,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率,過點的直線與原點的距離為。⑴求橢圓的方程;⑵已知定點,若直線與橢圓交于兩點,問:是否存在的值,使以為直徑的圓過點?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點,點,直線都是圓的切線(點不在軸上)。
⑴求過點且焦點在軸上拋物線的標準方程;
⑵過點作直線與⑴中的拋物線相交于兩點,問是否存在定點,使.為常數(shù)?若存在,求出點的坐標與常數(shù);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點A,B;O為坐標原點。
(1)若,試探究在曲線C上僅存在幾個點到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案