等腰△ABC的底邊在平面a 內(nèi),△ABC在平面a 內(nèi)的射影為等邊△BCD,若BC=2,AB=AC=,求二面角A-BC-D的大。

答案:
解析:

解:如圖所示

  ∵ △ABC為等腰三角形,DBC為正三角形,取BC中點(diǎn)E,連結(jié)DE,AE

  ∴ AEBC,DEBC,由二面角定義,∠AED是二面角

  A-BC-D的平面角

  ∵ BD=DC=BC=2,又AB=

  ∴ AD=

  又DE=2·sin60°=

  tan∠AED=

  ∴ ∠AED=30°,故二面角A-BC-D大小為30°.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)D為等腰△ABC的底邊BC上一點(diǎn),F(xiàn)為過A、D、C三點(diǎn)的圓在△ABC內(nèi)的弧上一點(diǎn),過B、D、F三點(diǎn)的圓與邊AB交于點(diǎn)E.求證:CD•EF+DF•AE=BD•AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰△ABC的底邊AB=6
6
,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B,D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)證明EF⊥平面PAE;
(Ⅱ)記BE=x,V(x)表示四棱錐P-ACFE的體積,求V(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上高縣模擬)如圖,等腰△ABC的底邊AB=6,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B、D的動(dòng)點(diǎn),點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE,記BE=x,V(x)表示四棱錐P-ACFE的體積.
(1)證明:CD⊥平面APE;
(2)設(shè)G是AP的中點(diǎn),試判斷DG與平面PCF的關(guān)系,并證明;
(3)當(dāng)x為何值時(shí),V(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

等腰△ABC的底邊在平面a 內(nèi),△ABC在平面a 內(nèi)的射影為等邊△BCD,若BC=2AB=AC=,求二面角A-BC-D的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案