【題目】如圖,AC 是圓 O 的直徑,點 B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(1)證明:EM⊥BF;
(2)求平面 BEF 與平面ABC 所成的二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù):f(x)=﹣x3﹣3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x﹣1)﹣b+a+3,判斷h(x)的奇偶性,并討論h(x)的單調(diào)性;
(2)若g(x)=|f(x)|,設M(a,b)為g(x)在[﹣2,0]的最大值,求M(a,b)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求第3,4,5組的頻率;
(2)為了了解最優(yōu)秀學生的情況,該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x),y=g(x)的值域均為R,有以下命題:
①若對于任意x∈R都有f[f(x)]=f(x)成立,則f(x)=x.
②若對于任意x∈R都有f[f(x)]=x成立,則f(x)=x.
③若存在唯一的實數(shù)a,使得f[g(a)]=a成立,且對于任意x∈R都有g[f(x)]=x2﹣x+1成立,則存在唯一實數(shù)x0 , 使得g(ax0)=1,f(x0)=a.
④若存在實數(shù)x0 , y0 , f[g(x0)]=x0 , 且g(x0)=g(y0),則x0=y0 .
其中是真命題的序號是 . (寫出所有滿足條件的命題序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|的定義域為D,其中a為常數(shù);
(1)若D=R,且f(x)是奇函數(shù),求a的值;
(2)若a≤﹣1,D=[﹣1,0],函數(shù)f(x)的最小值是g(a),求g(a)的最大值;
(3)若a>0,在[0,3]上存在n個點xi(i=1,2,…,n,n≥3),滿足x1=0,xn=3,x1<x2<…<xn , 使|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xn﹣1)﹣f(xn)|= ,求實數(shù)a的取值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動物園需要用籬笆圍成兩個面積均為50 的長方形熊貓居室,如圖所示,以墻為一邊(墻不需要籬笆),并共用垂直于墻的一條邊,為了保證活動空間,垂直于墻的邊長不小于2m,每個長方形平行于墻的邊長也不小于2m.
(1)設所用籬笆的總長度為l,垂直于墻的邊長為x.試用解析式將l表示成x的函數(shù),并確定這個函數(shù)的定義域;
(2)怎樣圍才能使得所用籬笆的總長度最?籬笆的總長度最小是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=a(a∈R),an+1= ,n∈N*;
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a=5,求S2016;
(3)若a= (m∈N*),求S4m+2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,進而求得q和a1,根據(jù){an}為正項等比數(shù)列推知{bn}為等差數(shù)列,進而得出數(shù)列bn的通項公式和前n項和,可知Sn的表達式為一元二次函數(shù),根據(jù)其單調(diào)性進而求得Sn的最大值.
由題意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,則a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}為正項等比數(shù)列,
∴{bn}為等差數(shù)列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12時,(Sn)max=132.
故答案為:C.
【點睛】
這個題目考查的是等比數(shù)列的性質(zhì)和應用;解決等差等比數(shù)列的小題時,常見的思路是可以化基本量,解方程;利用等差等比數(shù)列的性質(zhì)解決題目;還有就是如果題目中涉及到的項較多時,可以觀察項和項之間的腳碼間的關系,也可以通過這個發(fā)現(xiàn)規(guī)律。
【題型】單選題
【結(jié)束】
12
【題目】已知數(shù)列是遞增數(shù)列,且對,都有,則實數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著生活水平的提高,越來越多的人參與了潛水這項活動。某潛水中心調(diào)查了100名男姓與100名女姓下潛至距離水面5米時是否會耳鳴,下圖為其等高條形圖:
繪出2×2列聯(lián)表;
②根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.05的前提下認為耳鳴與性別有關系?
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com