【題目】在四棱錐P﹣ABCD中,設(shè)底面ABCD是邊長為1的正方形,PA⊥面ABCD.

(1)求證:PC⊥BD;
(2)過BD且與直線PC垂直的平面與PC交于點(diǎn)E,當(dāng)三棱錐E﹣BCD的體積最大時(shí),求二面角E﹣BD﹣C的大。

【答案】
(1)證明:∵四邊形ABCD是正方形,∴BD⊥AC,PA⊥平面ABCD,

由此推出PA⊥BD,

又AC∩PA=A,

∴BD⊥平面PAC,而PC平面PAC,所以推出PC⊥BD


(2)解:設(shè)PA=x,三棱錐E﹣BCD的底面積為定值,求得它的高 ,

當(dāng) ,即 時(shí),h最大值為 ,三棱錐E﹣BCD的體積達(dá)到最大值為

以點(diǎn)A為坐標(biāo)原點(diǎn),AB為x軸,AD為y軸,PA為z軸建立空間直角坐標(biāo)系,則 ,令E(x,y,z), , ,得 ,∴

設(shè) 是平面EBD的一個(gè)法向量, ,

,得

是平面BCD的一個(gè)法向量,

,∴二面角E﹣BD﹣C為


【解析】(1)證明BD⊥AC,PA⊥BD,即可證明BD⊥平面PAC,然后推出PC⊥BD.(2)設(shè)PA=x,三棱錐E﹣BCD的底面積為定值,求得它的高 ,求出三棱錐E﹣BCD的體積的最大值,以點(diǎn)A為坐標(biāo)原點(diǎn),AB為x軸,AD為y軸,PA為z軸建立空間直角坐標(biāo)系,求出平面EBD的一個(gè)法向量,平面BCD的一個(gè)法向量,利用向量的數(shù)量積求解即可.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面垂直的性質(zhì),需要了解垂直于同一個(gè)平面的兩條直線平行才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )單調(diào),則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進(jìn),到目前,中國擁有世界上最大的快遞市場(chǎng).某快遞公司收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過(不足,按計(jì)算)需再收5.

該公司將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:

公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計(jì)算該公司未來5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;

(2)①估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;

②根據(jù)以往的經(jīng)驗(yàn),公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤,其余的用作其他費(fèi)用.目前前臺(tái)有工作人員3人,每人每天攬件不超過150件,日工資100元.公司正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1已知fx+1=x2+4x+1,求fx的解析式.

2已知fx是一次函數(shù),且滿足3fx+1-fx=2x+9.求fx

3已知fx滿足2fx+f =3x,求fx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年10月9日,教育部考試中心下發(fā)了《關(guān)于年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會(huì)主義核心價(jià)值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.鞍山市教育部門積極回應(yīng),編輯傳統(tǒng)文化教材,在全是范圍內(nèi)開設(shè)書法課,經(jīng)典誦讀等課程.為了了解市民對(duì)開設(shè)傳統(tǒng)文化課的態(tài)度,教育機(jī)構(gòu)隨機(jī)抽取了位市民進(jìn)行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民人中支持態(tài)度的為人.

支持

不支持

合計(jì)

男性

女性

合計(jì)

(1)完成列聯(lián)表

(2)判斷是否有的把握認(rèn)為性別與支持有關(guān)?

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),則下列結(jié)論錯(cuò)誤的是( )

A. 是偶函數(shù) B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)M的極坐標(biāo)為 ,若直線l過點(diǎn)P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA||PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的增函數(shù),實(shí)數(shù)使得對(duì)于任意都成立,則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形的三個(gè)頂點(diǎn)坐標(biāo)為,

1)求平行四邊形的頂點(diǎn)D的坐標(biāo);

2)在中,求邊上的高所在直線方程;

3)求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案