【題目】如圖1,在梯形中,,,過分別作的垂線,垂足分別為,已知,將梯形沿同側折起,使得平面平面,平面平面,得到圖2.

(1)證明:平面;

(2)求三棱錐的體積.

【答案】(1)見證明;(2)

【解析】

(1)設,取中點,連接,證得,且,得到四邊形為平行四邊形,得出,利用線面平行的判定定理,即可證得平面.

(2)證得,得到點到平面的距離等于點到平面的距離,再利用錐體的體積公式,即可求解.

(1)設,取中點,連接

∵四邊形為正方形,∴中點,

中點,∴

因為平面平面,平面平面,,

平面,所以平面

又∵平面平面,∴平面平面,同理,平面

又∵,,∴,

,且,∴四邊形為平行四邊形,∴,

平面,平面,∴平面.

(2)因為,平面平面,所以

∴點到平面的距離等于點到平面的距離.

∴三棱錐的體積公式,可得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=2cosxsinx+2φ)為偶函數(shù),其中φ∈(0,),則下列關于函數(shù)gx)=sin2x+φ)的描述正確的是(

A.gx)在區(qū)間[]上的最小值為﹣1

B.gx)的圖象可由函數(shù)fx)的圖象向上平移一個單位,再向右平移個單位長度得到

C.gx)的圖象的一個對稱中心為(,0

D.gx)的一個單調遞增區(qū)間為[0,]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016915中秋節(jié)(農歷八月十五)到來之際,某月餅銷售企業(yè)進行了一項網上調查,得到如下數(shù)據(jù):

合計

喜歡吃月餅人數(shù)(單位:萬人)

50

40

90

不喜歡吃月餅人數(shù)(單位:萬人)

30

20

50

合計

80

60

140

為了進一步了解中秋節(jié)期間月餅的消費量,對參與調查的喜歡吃月餅的網友中秋節(jié)期間消費月餅的數(shù)量進行了抽樣調查,得到如下數(shù)據(jù):

已知該月餅廠所在銷售范圍內有30萬人,并且該廠每年的銷售份額約占市場總量的35%.

1)試根據(jù)所給數(shù)據(jù)分析,能否有以上的把握認為,喜歡吃月餅與性別有關?

參考公式與臨界值表:,

其中:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

2)若忽略不喜歡月餅者的消費量,請根據(jù)上述數(shù)據(jù)估計:該月餅廠恰好生產多少噸月餅恰好能滿足市場需求?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:其中所有假命題的序號是_______.

①命題,的否定是,;

②將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像;

③冪函數(shù)上是減函數(shù),則實數(shù);

④函數(shù)有兩個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的圖象為C,下面結論正確的是( )

A.函數(shù)f(x)的最小正周期是2π.

B.函數(shù)f(x)在區(qū)間上是遞增的

C.圖象C關于點對稱

D.圖象C由函數(shù)g(x)=sin2x的圖象向左平移個單位得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到定點和到直線的距離之比為,設動點的軌跡為曲線,過點作垂直于軸的直線與曲線相交于兩點,直線與曲線交于兩點,與相交于一點(交點位于線段上,且與不重合).

(1)求曲線的方程;

(2)當直線與圓相切時,四邊形的面積是否有最大值?若有,求出其最大值及對應的直線的方程;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】因客流量臨時增大,某鞋店擬用一個高為50(即)的平面鏡自制一個豎直擺放的簡易鞋鏡,根據(jù)經驗:一般顧客的眼睛到地面的距離為)在區(qū)間內,設支架高為,顧客可視的鏡像范圍為(如圖所示),記的長度為).

(I)當時,試求關于的函數(shù)關系式和的最大值;

(II)當顧客的鞋在鏡中的像滿足不等關系(不計鞋長)時,稱顧客可在鏡中看到自己的鞋,若使一般顧客都能在鏡中看到自己的鞋,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有兩個零點,求實數(shù)a的取值范圍

2)證明:

查看答案和解析>>

同步練習冊答案