【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14元.
(1)求這次行車總費用y關于x的表達式;
(2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.
【答案】(1) y=+x,x∈[50,100] (或y=+x,x∈[50,100]).(2) 當x=18千米/時,這次行車的總費用最低,最低費用的值為26元.
【解析】
(1)先確定所用時間,再乘以每小時耗油與每小時工資的和得到總費用表達式,(2)利用基本不等式求最值即得結(jié)果.
(1)設所用時間為t= (h),
y=×2×+14×,x∈[50,100].
所以,這次行車總費用y關于x的表達式是y=+x,x∈[50,100]
(或y=+x,x∈[50,100]).
(2)y=+x≥26,
當且僅當=x,
即x=18時等號成立.
故當x=18千米/時,這次行車的總費用最低,最低費用的值為26元.
科目:高中數(shù)學 來源: 題型:
【題目】
設平面上向量=(cosα,sinα) (0°≤α<360°),=(-,).
(1)試證:向量與垂直;
(2)當兩個向量與的模相等時,求角α.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是“相似”的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點,橢圓的長軸長是4,橢圓長軸長是2,點,分別是橢圓的左焦點與右焦點.
(1)求橢圓,的方程;
(2)過的直線交橢圓于點,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:經(jīng)過點,離心率為.
(1)求橢圓的標準方程;
(2)過坐標原點作直線交橢圓于、兩點,過點作的平行線交橢圓于、兩點.
①是否存在常數(shù),滿足?若存在,求出這個常數(shù);若不存在,請說明理由;
②若的面積為, 的面積為,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某摸球游戲的規(guī)則如下:從裝有5個大小、形狀完全相同的小球的盒中摸球(其中3個紅球、2個黃球),每次摸一個球記錄顏色并放回,若摸出紅球記1分,摸出黃球記2分.
(1)求“摸球三次得分為5分”的概率;
(2)設ξ為摸球三次所得的分數(shù),求隨機變量ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月1日起我國實施了個人所得稅的新政策,新政策的主要內(nèi)容有:①個稅起征點為5000元,②每月應納稅所得額(含稅)=收入個稅起征點專項附加扣除.趙先生某月收入元,符合贍養(yǎng)老人與子女教育專項附加扣除,共計3000元.
新個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 | … |
每月應納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元25000元的部分 | … |
稅率(%) | 3 | 10 | 20 | … |
(1)當時,趙先生當月應繳納的個稅額是多少?
(2)設趙先生當月應繳納的個稅額是元,若,請求出關于的函數(shù);
(3)若趙先生該月應納的個稅額為3020元,問他的月收入是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱柱的側(cè)棱垂直于底面, ,點分別是和的中點.
(1)證明:平面;
(2)設,當為何值時,平面,試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分別求適合下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經(jīng)過點A (,-2),B(-2,1);
(2)與橢圓有相同焦點且經(jīng)過點M(,1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com