【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說明:數(shù)學(xué)滿分150分,物理滿分100分)
分組 | |||||
頻數(shù) | 6 | 9 | 20 | 10 | 5 |
(1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;
(2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);
(3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從數(shù)學(xué)成績(jī)?yōu)椤皟?yōu)”的同學(xué)中隨機(jī)抽取2人,求兩人恰好均為物理成績(jī)“優(yōu)”的概率.
【答案】(1)(分);(2)75分;(3).
【解析】
(1)根據(jù)頻率和為1,以及已知條件,求出,由平均數(shù)公式,即可求解;
(2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,可估計(jì)出中位數(shù);
(3)根據(jù)已知條件可得,數(shù)學(xué)優(yōu)的4人,其中3人物理為優(yōu),分別對(duì)4人編號(hào),列出4人任取2人的所有情況,確定滿足條件的基本事件的個(gè)數(shù),按古典概型概率公式,即可求解.
(1)由于,
解得,
故數(shù)學(xué)成績(jī)的平均分
(分),
(2)由表知,物理成績(jī)的中位數(shù)為75分.
(3)數(shù)學(xué)成績(jī)?yōu)椤皟?yōu)”的同學(xué)有4人,物理成績(jī)?yōu)椤皟?yōu)”有5人,
因?yàn)橹辽儆幸粋(gè)“優(yōu)”的同學(xué)總數(shù)為6名同學(xué),故兩科均為“優(yōu)”的人數(shù)為3人.
設(shè)兩科均為“優(yōu)”的同學(xué)為,物理成績(jī)不是“優(yōu)”的同學(xué)為B,
則從4人中隨機(jī)抽取2人的所有情況有:
,
符合題意的情況有:,
故兩人恰好均為物理成績(jī)“優(yōu)”的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左頂點(diǎn)為,右焦點(diǎn)為,斜率為1的直線與橢圓交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)且與直線平行的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,且與橢圓的另一個(gè)交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第十一屆全國(guó)少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)在河南鄭州舉行,某項(xiàng)目比賽期間需要安排3名志愿者完成5項(xiàng)工作,每人至少完成一項(xiàng),每項(xiàng)工作由一人完成,則不同的安排方式共有多少種
A.60B.90C.120D.150
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,是的中點(diǎn),.
(Ⅰ)求證:平面;
(Ⅱ)異面直線和所成角的余弦值為,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2=(c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.
(1)若橢圓C經(jīng)過兩點(diǎn)、,求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在銳角中,角的對(duì)邊分別為,若,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,且,過棱的中點(diǎn),作交于點(diǎn).
(1)證明:平面;
(2)若面與面所成二面角的大小為,求與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù),其中xnyn∈R,n∈N*,i為虛數(shù)單位,,z1=3+4i,復(fù)數(shù)zn在復(fù)平面上對(duì)應(yīng)的點(diǎn)為Zn.
(1)求復(fù)數(shù)z2,z3,z4的值;
(2)是否存在正整數(shù)n使得?若存在,求出所有滿足條件的;若不存在,請(qǐng)說明理由;
(3)求數(shù)列的前項(xiàng)之和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com