【題目】在三棱錐,中,平面,,,,為的中點,為的中點.
(1)證明:平面平面;
(2)在線段上是否存在一點,使平面?若存在,指出點的位置并給出證明,若不存在,說明理由;
(3)若,求二面角的大小.
【答案】(1)證明見解析;(2)存在,點為上的靠近的四等分點;(3).
【解析】
(1)先證明平面,再利用面面垂直的判定定理得到結(jié)論;
(2)取點為上的靠近的四等分點即,平面,利用面面平行,判斷出線面平行,判斷出結(jié)論成立;
(3)根據(jù)題意,作于,過作的平行線為軸,為軸,為軸,建立空間直角坐標系,平面的法向量為,求出平面的法向量,利用夾角公式求出二面角的余弦值,求出角.
解:(1)由平面,平面,
故,由,,
平面,所以平面,
平面,
故平面平面;
(2)存在點為上的靠近的四等分點即,平面,
證明如下:取的中點,連接,,則,
因為平面,平面,所以平面,
又,平面,
所以平面平面,
又平面,
所以平面;
(3)作于,過作的平行線為軸,為軸,為軸,建立空間直角坐標系,
由,,得,,,,,,
故,,,,
,,
設(shè)平面的法向量為,
由,得,
平面的法向量為,
由,因為二面角為鈍角,
故所求二面角為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, =2.718………),
(I) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時,不等式對任意恒成立,
求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年初新冠病毒疫情爆發(fā),全國范圍開展了“停課不停學(xué)”的線上教學(xué)活動.哈六中數(shù)學(xué)組積極研討網(wǎng)上教學(xué)策略:先采取甲、乙兩套方案教學(xué),并對分別采取兩套方案教學(xué)的班級的次線上測試成績進行統(tǒng)計如圖所示:
(1)請?zhí)顚懴卤恚ㄒ髮懗鲇嬎氵^程)
平均數(shù) | 方差 | |
甲 | ||
乙 |
(2)從下列三個不同的角度對這次方案選擇的結(jié)果進行
①從平均數(shù)和方差相結(jié)合看(分析哪種方案的成績更好);
②從折線圖上兩種方案的走勢看(分析哪種方案更有潛力).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界第一產(chǎn)糧大國,我國糧食產(chǎn)量很高,整體很安全按照14億人口計算,中國人均糧食產(chǎn)量約為950斤﹣比全球人均糧食產(chǎn)量高了約250斤.如圖是中國國家統(tǒng)計局網(wǎng)站中2010﹣2019年,我國糧食產(chǎn)量(千萬噸)與年末總?cè)丝冢ㄇf人)的條形圖,根據(jù)如圖可知在2010﹣2019年中( )
A.我國糧食年產(chǎn)量與年末總?cè)丝诰鹉赀f增
B.2011年我國糧食年產(chǎn)量的年增長率最大
C.2015年﹣2019年我國糧食年產(chǎn)量相對穩(wěn)定
D.2015年我國人均糧食年產(chǎn)量達到了最高峰
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請從下面三個條件中任選一個,補充在下面的橫線上,并作答.
①AB⊥BC,②FC與平面ABCD所成的角為,③∠ABC.
如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA=AB=2,,PD的中點為F.
(1)在線段AB上是否存在一點G,使得AF平面PCG?若存在,指出G在AB上的位置并給以證明;若不存在,請說明理由;
(2)若_______,求二面角F﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方、塹堵、陽馬、鱉臑這些名詞出自中國古代數(shù)學(xué)名著《九章算術(shù)商功》.其中陽馬和鱉臑是我國古代對一些特殊錐體的稱呼.取一長方,如圖長方體ABCD﹣A1B1C1D1,按平面ABC1D1斜切一分為二,得到兩個一模一樣的三棱柱.稱該三梭柱為塹堵,再沿塹堵的一頂點與相對的棱剖開,得四棱錐和三棱錐各一個,其中以矩形為底另有一棱與底面垂直的四梭錐D1﹣ABCD稱為陽馬,余下的三棱錐D1﹣BCC1是由四個直角三角形組成的四面體稱為鱉臑.已知長方體ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,按以上操作得到陽馬.則該陽馬的最長棱長為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求曲線的參數(shù)方程與直線的普通方程;
(Ⅱ)設(shè)點為曲線上的動點,點和點為直線上的點,且.求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】產(chǎn)量相同的機床一和機床二生產(chǎn)同一種零件,在一個小時內(nèi)生產(chǎn)出的次品數(shù)分別記為,,它們的分布列分別如下:
0 | 1 | 2 | 3 | |
0.4 | 0.3 | 0.2 | 0.1 |
0 | 1 | 2 | |
0.2 | 0.6 | 0.2 |
(1)哪臺機床更好?請說明理由;
(2)記表示臺機床小時內(nèi)共生產(chǎn)出的次品件數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.
(1)求的取值范圍;
(2)設(shè)兩個極值點分別為:,,證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com