【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中“竹九節(jié)”問題曰:“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升,問中間兩節(jié)欲均容各多少?”其意為:“現(xiàn)有一根9節(jié)的竹子,自上而下的容積成等差數(shù)列,下面3節(jié)容量為4升,上面4節(jié)容積為3升,問中間2節(jié)各多少容積?”則中間2節(jié)容積合計(jì)________

【答案】

【解析】

根據(jù)題意題意設(shè)九節(jié)竹至下而上各節(jié)的容量分別為,,,公差為,利用等差數(shù)列的前項(xiàng)和公式和通項(xiàng)公式列出方程組,求得首項(xiàng)和公差,再計(jì)算中間兩節(jié)、的值,再求中間2節(jié)總?cè)莘e.

根據(jù)題意,九節(jié)竹的每一節(jié)容量變化均勻,即其每一節(jié)的容量成等差數(shù)列,

設(shè)至下而上各節(jié)的容量分別為,,,公差為,

分析可得:

解可得,,

(升,

(升

故中間兩節(jié)的總?cè)莘e為.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.(12分)
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測點(diǎn)A、B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音的時(shí)間比在B地晚秒. A地測得該儀器彈至最高點(diǎn)H時(shí)的仰角為30°.

(1)求A、C兩地的距離;

(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若對于,恒成立,求實(shí)數(shù)的取值范圍;

(2)若對于,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1:y=cosx,C2:y=sin(2x+ ),則下面結(jié)論正確的是(  )
A.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長度,得到曲線C2
B.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移 個(gè)單位長度,得到曲線C2
C.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長度,得到曲線C2
D.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3本相同的小說,2本相同的詩集全部分給4名同學(xué),每名同學(xué)至少1本,則不同的分法有( )

A. 24B. 28C. 32D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)設(shè),當(dāng)時(shí),若對任意,存在使,求實(shí)數(shù)取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x<1},B={x|3x<1},則(  )
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=

查看答案和解析>>

同步練習(xí)冊答案