【題目】在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,

AC的中點(diǎn)O為球心,AC為直徑的球面交PD于點(diǎn)M,交PC于點(diǎn)N.

(1)求證:平面ABM⊥平面PCD

(2)求直線CD與平面ACM所成角的大;

(3)求點(diǎn)N到平面ACM的距離.

【答案】(1)證明見解析.

(2) .

(3) .

【解析】分析:Ⅰ)要證平面ABM⊥平面PCD,只需證明平面PCD內(nèi)的直線PD,垂直平面PAD內(nèi)的兩條相交直線BM、AB即可;(Ⅱ)先根據(jù)體積相等求出D到平面ACM的距離為h,即可求直線PC與平面ABM所成的角;(Ⅲ)先根據(jù)條件分析出所求距離等于點(diǎn)P到平面ACM距離的,設(shè)點(diǎn)P到平面ACM距離為h,再利用第二問的結(jié)論即可得到答案.

詳解:

(1)AC是所作球面的直徑,AMMC,PA⊥平面ABCD,則PACD,又CDAD,

CD⊥平面PAD,則CDAM,∴AM⊥平面PCD,∴平面ABM⊥平面PCD;

(2),,設(shè)D到平面ACM的距離為h

,求得,∴,;

(3),,∴,∴,所求距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

A.12
B.24
C.36
D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中點(diǎn).
(Ⅰ)證明:直線CE∥平面PAB;
(Ⅱ)點(diǎn)M在棱PC 上,且直線BM與底面ABCD所成角為45°,求二面角M﹣AB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是 的中點(diǎn).(12分)
(Ⅰ)設(shè)P是 上的一點(diǎn),且AP⊥BE,求∠CBP的大小;
(Ⅱ)當(dāng)AB=3,AD=2時(shí),求二面角E﹣AG﹣C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,

(Ⅰ)求證:;

(Ⅱ)求證:

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個(gè)代數(shù)式,滿足所求式?若能,請(qǐng)直接寫出該代數(shù)式;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為1的正方體中,E,F(xiàn),G,H分別為A1B1 , C1D1 , AB,CD的中點(diǎn),點(diǎn)P從G出發(fā),沿折線GBCH勻速運(yùn)動(dòng),點(diǎn)Q從H出發(fā),沿折線HDAG勻速運(yùn)動(dòng),且點(diǎn)P與點(diǎn)Q運(yùn)動(dòng)的速度相等,記E,F(xiàn),P,Q四點(diǎn)為頂點(diǎn)的三棱錐的體積為V,點(diǎn)P運(yùn)動(dòng)的路程為x,在0≤x≤2時(shí),V與x的圖象應(yīng)為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列的前項(xiàng)和為,則下列命題:(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項(xiàng)均為正數(shù);(3)若是等差數(shù)列(公差),則的充要條件是;(4)若是等比數(shù)列,則的充要條件是.其中,正確命題的個(gè)數(shù)是( 。

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=an+n,利用如圖所示的程序框圖計(jì)算該數(shù)列的第10項(xiàng),則判斷框中應(yīng)填的語句是(

A.n>10
B.n≤10
C.n<9
D.n≤9

查看答案和解析>>

同步練習(xí)冊(cè)答案