已知函數(shù)y=|x|+1,,(x>0)的最小值恰好是方程x3+ax2+bx+c=0的三個(gè)根,其中0<t<1.
(1)求證:a2=2b+3;
(2)設(shè)(x1,M),(x2,N)是函數(shù)f(x)=x3+ax2+bx+c的兩個(gè)極值點(diǎn).若,求函數(shù)f(x)的解析式.
解:(1)三個(gè)函數(shù)的最小值依次為,,, 由,得 ∴ , 故方程的兩根是,. 故,. ,即∴. (2)①依題意是方程的根, 故有,,且△,得. 由 ;得,,. 由(1)知,故, ∴, ∴. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 函數(shù)(3) 題型:044
已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+(x>0)的值域?yàn)閇6,+∞),求b的值;
(2)研究函數(shù)y=x2+(常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說(shuō)明理由;
(3)對(duì)函數(shù)y=x+和y=x2+(常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫(xiě)出結(jié)論,不必證明),并求函數(shù)F(x)=+(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆甘肅省高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)y=x-3x+c的圖像與x軸恰有兩個(gè)公共點(diǎn),則c= ( )
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=x+(m為正數(shù)).
(1)若m=1,求當(dāng)x>1時(shí)函數(shù)的最小值;
(2)當(dāng)x<1時(shí),函數(shù)有最大值-3,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=()|x+1|.
(1)作出圖象;
(2)由圖象指出其單調(diào)區(qū)間;
(3)由圖象指出當(dāng)x取什么值時(shí),函數(shù)有最值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=x.
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性;
(3)已知該函數(shù)在第一象限內(nèi)的圖象如右圖所示,試補(bǔ)全圖象,并由圖象確定單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com