【題目】如圖,在四棱錐中,底面是矩形,平面、與平面所成的角依次是,,依次是,上的點(diǎn),其中.

1)求直線與平面所成的角(結(jié)果用反三角函數(shù)值表示);

2)求三棱錐的體積.

【答案】1;(2

【解析】

1)以、軸、軸、軸建立空間直角坐標(biāo)系,寫(xiě)各點(diǎn)的坐標(biāo),求出直線的方向向量和平面的法向量,然后代入線面角的向量求解公式,求得線面角的正弦值,從而得到答案.

2)求出三棱錐底面的面積,再利用向量法求三棱錐的高,最后代入體積公式求得答案.

1)分別以、軸、軸、軸建立空間直角坐標(biāo)系,

依題意得:,,

,,分別是,的中點(diǎn),

則各點(diǎn)坐標(biāo)分別是:,,,,,

平面,

平面的法向量為

設(shè)直線與平面所成的角為,則

直線與平面所成的角為

2)連結(jié),在直角三角形中,

在直角三角形中,

為等腰三角形,其面積

由(1)得:,,,

設(shè)平面的法向量,則,

設(shè)到面的距離為,則,

三棱錐體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)報(bào)道,全國(guó)很多省市將英語(yǔ)考試作為高考改革的重點(diǎn),一時(shí)間英語(yǔ)考試該如何改革引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3600人進(jìn)行調(diào)查,就是否取消英語(yǔ)聽(tīng)力問(wèn)題進(jìn)行了問(wèn)卷調(diào)查統(tǒng)計(jì),結(jié)果如下表:

態(tài)度

調(diào)查人群

應(yīng)該取消

應(yīng)該保留

無(wú)所謂

在校學(xué)生

2100

120

社會(huì)人士

600

(1)已知在全體樣本中隨機(jī)抽取人,抽到持應(yīng)該保留態(tài)度的人的概率為,現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問(wèn)卷訪談,問(wèn)應(yīng)在持無(wú)所謂態(tài)度的人中抽取多少人?

(2)在持應(yīng)該保留態(tài)度的人中,用分層抽樣的方法抽取人,再平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,若對(duì)任意的,也是數(shù)列中的項(xiàng),則稱(chēng)數(shù)列數(shù)列,已知數(shù)列滿足:對(duì)任意的,均有,其中表示數(shù)列的前項(xiàng)和.

1)求證:數(shù)列為等差數(shù)列;

2)若數(shù)列數(shù)列,,,求的所有可能值;

3)若對(duì)任意的,也是數(shù)列中的項(xiàng),求證:數(shù)列數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓C (a>b>0)的離心率為,右焦點(diǎn)F到右準(zhǔn)線的距離為3.

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)F作直線l (不與x 軸重合)和橢圓C交于M, N兩點(diǎn),設(shè)點(diǎn).

①若的面積為,求直線l方程;

②過(guò)點(diǎn)M作與)軸垂直的直線l"和直線NA交于點(diǎn)P,求證:點(diǎn)P在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足.

1)證明:數(shù)列為等差數(shù)列;

2)設(shè)數(shù)列的前n項(xiàng)和為,若,且對(duì)任意的正整數(shù)n,都有,求整數(shù)的值;

3)設(shè)數(shù)列滿足,若,且存在正整數(shù)s,t,使得是整數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線為:到兩定點(diǎn)、距離乘積為常數(shù)的動(dòng)點(diǎn)的軌跡.以下結(jié)論正確的個(gè)數(shù)為(

1)曲線一定經(jīng)過(guò)原點(diǎn);

2)曲線關(guān)于軸、軸對(duì)稱(chēng);

3的面積不大于;

4)曲線在一個(gè)面積為的矩形范圍內(nèi).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某烘焙店加工一個(gè)成本為60元的蛋糕,然后以每個(gè)120元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的這種蛋糕作餐廚垃圾處理.

1)若烘焙店一天加工16個(gè)這種蛋糕,,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:個(gè),)的函數(shù)解析式;

2)烘焙店記錄了100天這種蛋糕的日需求量(單位:個(gè)),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

①若烘焙店一天加工16個(gè)這種蛋糕,表示當(dāng)天的利潤(rùn)(單位:元),求的分布列與數(shù)學(xué)期望及方差;

②若烘焙店一天加工16個(gè)或17個(gè)這種蛋糕,僅從獲得利潤(rùn)大的角度考慮,你認(rèn)為應(yīng)加工16個(gè)還是17個(gè)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則方程恰好有6個(gè)不同的解,則實(shí)數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐如圖的展開(kāi)圖如圖2,其中四邊形ABCD為邊長(zhǎng)等于的正方形,均為正三角形.

(1)證明:平面平面ABC;

(2)若MPC的中點(diǎn),點(diǎn)N在線段PA上,且滿足,求直線MN與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案