精英家教網 > 高中數學 > 題目詳情
已知α-l-β是大小確定的一個二面角,若a,b是空間兩條直線,則能使a,b所成的角為定值的一個條件是( )
A.a∥α且b∥β
B.a∥α且b⊥β
C.a⊥α且b∥β
D.a⊥α且b⊥β
【答案】分析:采用直接法,證明若a⊥α且b⊥β,則a,b所成的角為定值,方法是將直線平移到一個平面內,利用二面角的定義和線線角的定義證明兩角互補
解答:解:如圖,若a⊥α且b⊥β,
過A分別作直線a、b的平行線,交兩平面α、β分別為C、B
設平面ABC與棱l交點為O,連接BO、CO
易知四邊形ABOC四點共面
∴∠BOC與∠BAC互補
∵α-l-β是大小確定的一個二面角,而∠BOC就是它的平面角,
∴∠BOC是定值,∴∠BAC也是定值
即a,b所成的角為定值
故選D
點評:本題考查了空間想象能力,線線所成的角和面面角,特別是二面角的平面角,要會作,會證,會算
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知α-l-β是大小為45°的二面角,C為二面角內一定點,且到半平面α和β的距離分別為
2
和6,A、B分別是半平面α,β內的動點,則△ABC周長的最小值為( 。
A、6
2
+6
B、5
2
+5
C、15
D、10
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知α-l-β是大小為45°的二面角,C為二面角內一定點,且到平面α和β的距離分別為
2
和6,A,B分別是半平面α,β內的動點,則△ABC周長的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知α-l-β是大小確定的一個二面角,若a,b是空間兩條直線,則能使a,b所成的角為定值的一個條件是( 。

查看答案和解析>>

科目:高中數學 來源:2012年河北省衡水中學高考數學信息卷1(理科)(解析版) 題型:選擇題

已知橢圓方程是橢圓的左焦點,直線l為對應的準線,直線l與x軸交于P點,MN為橢圓的長軸,過P點任作一條割線AB(如圖),則∠AFM與∠BFN的大小關系為( )

A.∠AFM>∠BFN
B.∠AFM<∠BFN
C.∠AFM=∠BFN
D.無法判斷

查看答案和解析>>

同步練習冊答案