【題目】已知函數f(x)= ,若存在實數x1 , x2 , x3 , x4 滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則 的取值范圍是( )
A.(20,32)
B.(9,21)
C.(8,24)
D.(15,25)
【答案】B
【解析】解:函數的圖象如圖所示,
∵f(x1)=f(x2),
∴﹣log2x1=log2x2 ,
∴l(xiāng)og2x1x2=0,
∴x1x2=1,
∵f(x3)=f(x4),
∴x3+x4=12,2<x3<x4<10
∴ =x3x4﹣(x3+x4)+1=x3x4﹣11,
∵2<x3<x4<10
∴ 的取值范圍是(9,21).
故選:B.
【考點精析】關于本題考查的函數的零點與方程根的關系,需要了解二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】命題p:任意兩個等邊三角形都是相似的.
①它的否定是_________________________________________________________;
②否命題是_____________________________________________________________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , ∥, 為中點.
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在棱上是否存在點,使 ? 若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點是橢圓上的點,離心率為.
(1)求橢圓的方程;
(2)點在橢圓上上,若點與點關于原點的對稱,連接,并延長與橢圓的另一個交點為,連接,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非零向量 , , , 滿足 =2 ﹣ , =k + ,給出以下結論:
①若 與 不共線, 與 共線,則k=﹣2;
②若 與 不共線, 與 共線,則k=2;
③存在實數k,使得 與 不共線, 與 共線;
④不存在實數k,使得 與 不共線, 與 共線.
其中正確結論的個數是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x=1是函數f(x)=ax3-x2+(a+1)x+5的一個極值點.
(1)求函數f(x)的解析式;
(2)若曲線y=f(x)與直線y=2x+m有三個交點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0,且直線l與圓C交于A、B兩點.
(1)若|AB|= ,求直線l的傾斜角;
(2)若點P(1,1),滿足2 = ,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}中,已知a1=2,a4=16
(1)求數列{an}的通項公式;
(2)若a3 , a5分別為等差數列{bn}的第3項和第5項,試求數列{bn}的通項公式及前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線 (a>0,b>0)的右準線l2與一條漸近線l交于點P,F是雙曲線的右焦點.
(1)求證:PF⊥l;
(2)若PF=3,且雙曲線的離心率e=,求該雙曲線的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com