【題目】一家水果店的店長(zhǎng)為了解本店蘋(píng)果的日銷(xiāo)售情況,記錄了過(guò)去30天蘋(píng)果的日銷(xiāo)售量(單位:kg),結(jié)果如下:

83,96107,91,70,75,94,80,80100,

75,99117,8974,9484,85,101,87.

93,85,10799,55,97,8684,85,104

1)請(qǐng)計(jì)算該水果店過(guò)去30天蘋(píng)果日銷(xiāo)售量的中位數(shù)、平均數(shù)、極差和標(biāo)準(zhǔn)差

2)一次進(jìn)貨太多,水果會(huì)變得不新鮮;進(jìn)貨太少,又不能滿足顧客的需求,店長(zhǎng)希望每天的蘋(píng)果盡量新鮮,又能80%地滿足顧客的需求(在100天中,大約有80天可以滿足顧客的需求),請(qǐng)問(wèn),每天應(yīng)該進(jìn)多少千克蘋(píng)果?

【答案】1)中位數(shù)為,平均數(shù)為89.2,極差為,標(biāo)準(zhǔn)差約為12.58;(2)每天應(yīng)該進(jìn)99千克蘋(píng)果.

【解析】

1)將30天蘋(píng)果日銷(xiāo)售量按照從小到大排列,即可求得中位數(shù)、平均數(shù)和極差,根據(jù)方差公式即可求得方差,進(jìn)而求得標(biāo)準(zhǔn)差.

280%地滿足顧客,100天中,大約有80天可以滿足顧客的需求,所以從小到大排列日銷(xiāo)售量,取前80%即可.

1)將數(shù)據(jù)從小到大排列為:

55 70 74 75 75 80 80 83 84 84 85 85 85 86 87 89 91 93 94 94 96 97 99 99 100 101 104 107 107 117

中位數(shù)為

平均數(shù)為

極差為

由方差公式可知

則標(biāo)準(zhǔn)差約

2,數(shù)據(jù)從小到大排列,24個(gè)數(shù)據(jù)為99

∴每天應(yīng)該進(jìn)99千克蘋(píng)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲(chóng)的6組觀測(cè)數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/個(gè)

6

11

20

27

57

77

經(jīng)計(jì)算得: , , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說(shuō)明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:

函數(shù)的最小值是2

等差數(shù)列的前n項(xiàng)和為,滿足,,則當(dāng)時(shí),取最大值;

等比數(shù)列的前n項(xiàng)和為,若,則;

,恒成立,則實(shí)數(shù)a的取值范圍是

其中所有正確命題的序號(hào)是________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐(如圖)的平面展開(kāi)圖(如圖)中,四邊形為邊長(zhǎng)為的正方形,均為正三角形,在三棱錐中:

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)a>0a≠1)是奇函數(shù).

1)求常數(shù)k的值;

2)若已知f1=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn).

(1)求橢圓的方程;

(2)若以為直徑的圓過(guò)坐標(biāo)原點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市家庭用電量的情況,該市統(tǒng)計(jì)局調(diào)查了200戶居民去年一年的月均用電量(單位kWh,數(shù)據(jù)從小到大排序如下:

8 18 22 31 42 48 49 50 51 56 57 57 60 61 61

61 62 62 63 63 65 66 67 69 70 70 71 72 72 74

76 77 77 78 78 80 80 82 82 82 83 84 84 88 88

89 90 91 93 93 94 95 96 96 96 97 98 98 98 99

100 100 100 101 101 101 105 106 106 106 107

107 107 107 108 108 109 109 110 110 110 111

112 113 113 114 115 116 118 120 120 120 121

123 124 127 127 127 130 130 130 131 131 132

132 132 133 133 134 134 134 135 135 135 135

136 137 137 138 139 139 140 141 142 144 146

146 147 148 149 151 152 154 156 159 160 162

163 163 164 165 167 169 170 170 172 174 174

177 178 178 180 182 182 187 189 191 191 192

194 194 200 201 201 202 203 203 206 208 212

213 214 216 223 224 237 247 250 250 251 253

254 258 260 265 274 274 283 288 289 304 319

320 324 339 462 498 530 542 626

為了既滿足居民的基本用電需求,又提高能源的利用效率,市政府計(jì)劃采用階梯電價(jià),使75%的居民繳費(fèi)在第一檔,20%的居民繳費(fèi)在第二檔,其余5%的居民繳費(fèi)在第三檔,請(qǐng)確定各檔的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過(guò)點(diǎn)(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標(biāo)原點(diǎn)到l1,l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知圓的圓心為,半徑為.以極點(diǎn)為原點(diǎn),極軸方向?yàn)?/span>軸正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫(xiě)出圓的極坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案