【題目】如圖,在四棱錐中,CDAB,,,,,,,E的中點.

1)求證:

2)求P到平面的距離.

【答案】1)見解析(2

【解析】

1)設M的中點連,可證,得出平面,即可證明結論;

(2)設F的中點,得,點P到平面的距離就是點P到平面的距離,根據(jù)已知,由(1)的結論可得平面,再由(1平面,可得,求出的面積,利用,即可求解.

1)如圖6,設M的中點,連,

在梯形中,CDAB ,

四邊形是平行四邊形,

中,,則,

是平面內(nèi)的兩條相交直線,

所以平面,而在平面內(nèi),

所以.

2)如圖7,設F的中點,則,

P到平面的距離就是點P到平面的距離,

中,,,

所以,又,所以平面,

中,,

由(1平面,則,

,

設點P到平面的距離為,

,

所以點P到平面的距離即到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】3月底,我國新冠肺炎疫情得到有效防控,但海外確診病例卻持續(xù)暴增,防疫物資供不應求,某醫(yī)療器械廠開足馬力,日夜生產(chǎn)防疫所需物品.已知該廠有兩條不同生產(chǎn)線生產(chǎn)同一種產(chǎn)品各10萬件,為保證質(zhì)量,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如下所示:

該產(chǎn)品的質(zhì)量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到的產(chǎn)品,質(zhì)量等級為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

1)從等級為優(yōu)秀的樣本中隨機抽取兩件,記為來自機器生產(chǎn)的產(chǎn)品數(shù)量,寫出的分布列,并求的數(shù)學期望;

2)請完成下面質(zhì)量等級與生產(chǎn)線產(chǎn)品列聯(lián)表,并判斷能不能在誤差不超過0.05的情況下,認為產(chǎn)品等級是否達到良好以上與生產(chǎn)產(chǎn)品的生產(chǎn)線有關.

生產(chǎn)線的產(chǎn)品

生產(chǎn)線的產(chǎn)品

合計

良好以上

合格

合計

附:

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線C)的焦點為F,經(jīng)過點F的動直線l交拋物線C,兩點,且.

1)求拋物線C的方程;

2)若O為坐標原點),且點E在拋物線C上,求直線l的傾斜角;

3)若點M是拋物線C的準線上的一點,直線,,斜率分別為,,求證:當為定值時,也為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”.三國時期,吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機地投擲100枚飛鏢,則估計飛鏢落在區(qū)域1的枚數(shù)最有可能是(

A.30B.40C.50D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定直線,定點,以坐標軸為對稱軸的橢圓過點且與相切.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)橢圓的弦的中點分別為,若平行于,則斜率之和是否為定值? 若是定值請求出該定值;若不是定值請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用×+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+2=2,設勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為(

A.134B.866C.300D.188

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地為改善旅游環(huán)境進行景點改造.如圖,將兩條平行觀光道l1l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3M),在堤岸線l3上的E,F兩處建造建筑物,其中E,FM的距離為1(百米),且F恰在B的正對岸(即BFl3).

1)在圖②中建立適當?shù)钠矫嬷苯亲鴺讼担⑶髼5?/span>AB的方程;

2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(EPF)最大?請在(1)的坐標系中,寫出觀測點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.

1)求的方程;

2)直線,兩點,且.已知上存在點,使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年國慶節(jié)假期期間,某商場為掌握假期期間顧客購買商品人次,統(tǒng)計了1017002300這一時間段內(nèi)顧客購買商品人次,統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)顧客購買商品共5000人次顧客購買商品時刻的的頻率分布直方圖如下圖所示,其中時間段700110011001500,15001900,19002300,依次記作[7,11),[11,15),[15,19),[1923].

1)求該天顧客購買商品時刻的中位數(shù)t與平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)由頻率分布直方圖可以近似認為國慶節(jié)假期期間該商場顧客購買商品時刻服從正態(tài)分布Nμ,δ2),其中μ近似為,δ3.6,估計2019年國慶節(jié)假期期間(101日﹣107日)該商場顧客在12121924之間購買商品的總?cè)舜危ńY果保留整數(shù));

3)為活躍節(jié)日氣氛,該商場根據(jù)題中的4個時間段分組,采用分層抽樣的方法從這5000個樣本中隨機抽取10個樣本(假設這10個樣本為10個不同顧客)作為幸運客戶,再從這10個幸運客戶中隨機抽取4人每人獎勵500元購物券,其他幸運客戶每人獎勵200元購物券,記獲得500元購物券的4人中在15001900之間購買商品的人數(shù)為X,求X的分布列與數(shù)學期望;

參考數(shù)據(jù):若TNμ,σ2),則①PμσT≤μ+σ)=0.6827;②PμT≤μ+2σ)=0.9545;③PμT≤μ+3σ)=0.9973.

查看答案和解析>>

同步練習冊答案