【題目】如圖,在直三棱柱中,,.
(I)求證:平面;
(II)若為的中點(diǎn),求與平面所成的角.
【答案】(I)見(jiàn)解析(II)與平面所成的角為
【解析】
試題(I)根據(jù)平面,證出,結(jié)合1得到平面,從而證出1.然后在正方形中證出,可得出平面;
(II)設(shè)與相交于點(diǎn),則點(diǎn)是線段的中點(diǎn).連接,由題意知是正三角形.可證與的交點(diǎn)為重心,連接.
由(I)知平面,于是是與平面所成的角.在直角中.計(jì)算
正弦值即可.
試題解析:(I)由題意知四邊形是正方形,故.
由平面,得.
又,所以平面,故.
從而得平面.
(II)設(shè)與相交于點(diǎn),則點(diǎn)是線段的中點(diǎn).
連接,由題意知是正三角形.
由,是的中線知:與的交點(diǎn)為重心,連接.
由(I)知平面,故是在平面上的射影,于是是與平面所成的角.
在直角中,, ,
所以.
故,即與平面所成的角為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】符號(hào)表示不大于x的最大整數(shù),例如:.
(1)解下列兩個(gè)方程;
(2)設(shè)方程: 的解集為A,集合,,求實(shí)數(shù)k的取值范圍;
(3)求方程的實(shí)數(shù)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是平行四邊形,PD⊥AB,O是AD的中點(diǎn),BO=CO.
(1)求證:AB⊥平面PAD;
(2)若AD=2AB=4, PA=PD,點(diǎn)M在側(cè)棱PD上,且PD=3MD,二面角P-BC-D的大小為,求直線BP與平面MAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】裝有除顏色外完全相同的6個(gè)白球、4個(gè)黑球和2個(gè)黃球的箱中隨機(jī)地取出兩個(gè)球,規(guī)定每取出1個(gè)黑球贏2元,而每取出1個(gè)白球輸1元,取出黃球無(wú)輸贏.
(1)以X表示贏得的錢數(shù),隨機(jī)變量X可以取哪些值?求X的分布列;
(2)求出贏錢(即時(shí))的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)任何有理數(shù)都是實(shí)數(shù);
(2)存在一個(gè)實(shí)數(shù),能使成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列“若p,則q”形式的命題中,哪些命題中的q是p的必要條件?
(1)若四邊形為平行四邊形,則這個(gè)四邊形的兩組對(duì)角分別相等;
(2)若兩個(gè)三角形相似,則這兩個(gè)三角形的三邊成比例;
(3)若四邊形的對(duì)角線互相垂直,則這個(gè)四邊形是菱形;
(4)若,則;
(5)若,則;
(6)若為無(wú)理數(shù),則x,y為無(wú)理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,得到下表:
(1)根據(jù)表中數(shù)據(jù),求關(guān)于的線性回歸方程;
(2)若近幾年該農(nóng)產(chǎn)品每萬(wàn)噸的價(jià)格 (萬(wàn)元)與年產(chǎn)量(萬(wàn)噸)滿足,且每年該農(nóng)產(chǎn)品都能售完,當(dāng)年產(chǎn)量為何值時(shí),銷售額最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高一學(xué)年結(jié)束后,要對(duì)某班的50名學(xué)生進(jìn)行文理分班,為了解數(shù)學(xué)對(duì)學(xué)生選擇文理科是否有影響,有人對(duì)該班的分科情況做了如下的數(shù)據(jù)統(tǒng)計(jì):
理科人數(shù) | 文科人數(shù) | 總計(jì) | |
數(shù)學(xué)成績(jī)好的人數(shù) | 25 | 30 | |
數(shù)學(xué)成績(jī)差的人數(shù) | 10 | ||
合計(jì) | 15 |
(Ⅰ)根據(jù)數(shù)據(jù)關(guān)系,完成列聯(lián)表;
(Ⅱ)通過(guò)計(jì)算判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為數(shù)學(xué)對(duì)學(xué)生選擇文理科有影響.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(I)平面PAD與平面PAB是否垂直?并說(shuō)明理由;
(II)求平面PCD與平面ABCD所成二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com