【題目】求下列方程組的解集:
(1)(2)
【答案】(1);(2).
【解析】
(1)方法一:由得出,代入,利用代入消元法可求出原方程組的解集;
方法二:根據(jù)一元二次方程根與系數(shù)的關(guān)系,可將、視為關(guān)于的一元二次方程的兩個實數(shù)解,解出該方程,即可得出原方程組的解集;
(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,可將、視為關(guān)于的一元二次方程的兩根,解出這個方程,可求出、的值,即可得出原方程組的解集.
(1)方法一:,由①得,③,
把③代入②,整理得,解得或,
把代入③得,把代入③得,
因此,原方程組的解集是;
方法二:根據(jù)一元二次方程根與系數(shù)的關(guān)系可知,
則、是關(guān)于的一元二次方程的兩個實數(shù)解,
解這個方程得,,因此,原方程組的解集是;
(2),
方程①是與的和,方程②是與的積,
與是關(guān)于的一元二次方程的兩根,
解此方程得,,或,解得或.
因此,原方程組的解集是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是奇函數(shù),且當x<0時,f(x)=x2+3x+2.若當x∈[1,3]時,n≤f(x)≤m恒成立,則m-n的最小值為( )
A. B. 2
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高三的學(xué)生中隨機抽取了100名學(xué)生,統(tǒng)計了某次數(shù)學(xué)?伎荚嚦煽?nèi)绫恚?/span>
(1)請在頻率分布表中的①、②位置上填上相應(yīng)的數(shù)據(jù),并在給定的坐標系中作出這些數(shù)據(jù)的頻率分布直方圖,再根據(jù)頻率分布直方圖估計這100名學(xué)生的平均成績;
(2)從這100名學(xué)生中,采用分層抽樣的方法已抽取了 20名同學(xué)參加“希望杯數(shù)學(xué)競賽”,現(xiàn)需要選取其中3名同學(xué)代表高三年級到外校交流,記這3名學(xué)生中“期中考試成績低于120分”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是函數(shù)的零點,.
(1)求實數(shù)的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在印度有一個古老的傳說:舍罕王打算獎賞國際象棋的發(fā)明人一宰相西薩·班·達依爾.國王問他想要什么,他對國王說:“陛下,請您在這張棋盤的第1個小格里,賞給我1粒麥子,在第2個小格里給2粒,第3小格給4粒,以后每1小格都比前1小格加1倍.請您把這樣擺滿棋盤上所有的64格的麥粒,都賞給您的仆人吧!”國王覺得這要求太容易滿足了,就同意給他這些麥粒.當人們把一袋一袋的麥子搬來開始計數(shù)時,國王才發(fā)現(xiàn)就是把全印度甚至全世界的麥粒全拿來,也滿足不了那位宰相的要求.那么,宰相要求得到的麥粒到底有多少粒?如圖所示的程序框圖是為了計算上面這個問題而設(shè)計的,那么在“”和“”中,可以先后填入( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“鄭一”號宇宙飛船返回艙順利到達地球后,為了及時將航天員救出,地面指揮中心的在返回艙預(yù)計到達的區(qū)域安排了同一條直線上的三個救援中心(記為).當返回艙距地面1萬米的點的時(假定以后垂直下落,并在點著陸),救援中心測得飛船位于其南偏東60°方向,仰角為60°,救援中心測得飛船位于其南偏西30°方向,仰角為30°,救援中心測得著陸點位于其正東方向.
(1)求兩救援中心間的距離;
(2)救援中心與著陸點間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·威海模擬)三人參加某娛樂闖關(guān)節(jié)目,假設(shè)甲闖關(guān)成功的概率是,乙、丙兩人同時闖關(guān)成功的概率是,甲、丙兩人同時闖關(guān)失敗的概率是,且三人各自能否闖關(guān)成功相互獨立.
(1)求乙、丙兩人各自闖關(guān)成功的概率;
(2)設(shè)ξ表示三人中最終闖關(guān)成功的人數(shù),求ξ的分布列和均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com