已知函數(shù).
(1)當時,求的最小值;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)當時,不等式恒成立,求實數(shù)的取值范圍.
(1) 3.(2) .(3) .
解析試題分析:(1) 當時,
當時 函數(shù)取最小值3.
(2) 設(shè)
依題意 得 .
(3) 當時 恒成立
當時 恒成立
設(shè) 則
(1)當時, 在單調(diào)遞增,
(2)當時,設(shè)
有兩個根,一個根大于1,一個根小于1.
不妨設(shè)
當時 即 在單調(diào)遞減
不滿足已知條件.
綜上:的取值范圍為.
考點:本題考查了導數(shù)的運用
點評:此類問題是在知識的交匯點處命題,將函數(shù)、導數(shù)、不等式、方程的知識融合在一起進行考查,重點考查了利用導數(shù)研究函數(shù)的極值與最值等知識
科目:高中數(shù)學 來源: 題型:解答題
定義在R上的函數(shù)f(x)是最小正周期為2的奇函數(shù), 且當x∈(0, 1)時, f (x)=.
(1)求f (x)在[-1, 1]上的解析式;
(2)證明f (x)在(—1, 0)上時減函數(shù);
(3)當λ取何值時, 不等式f (x)>λ在R上有解?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知正比例函數(shù)y=2x的圖像l1與反比例函數(shù)y=的圖像相交于點A(a,2),將直線l1向上平移3個單位得到的直線l2與雙曲線相交于B、C兩點(點B在第一象限),與y軸交于點D.
(1)求反比例函數(shù)的解析式;
(2)求△DOB的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)是函數(shù)的一個極值點。
(1)求與的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè),若存在,使得成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若函數(shù)無零點,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)在有且僅有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
(1)當時,求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實數(shù)的高考資源網(wǎng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)。
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若且,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分) 已知為實數(shù),,
(1)若,求的單調(diào)區(qū)間;
(2)若,求在[-2,2] 上的最大值和最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com