【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
【答案】(1);(2)6.8千元.
【解析】試題分析:(1)根據所給的數據,利用最小二乘法可得橫標和縱標的平均數,橫標和縱標的積的和,與橫標的平方和,代入公式求出b的值,再求出a的值,寫出線性回歸方程.
(2)根據上一問做出的線性回歸方程,代入所給的t的值,預測該地區(qū)2015年農村居民家庭人均純收入,這是一個估計值.
試題解析:(1)由題意, ,
,
,
∴y關于t的線性回歸方程為; 8分
(2)由(1)知,b=0.5>0,故2007年至2013年該地區(qū)農村居民家庭人均純收入逐年增加,平均每年增加0.5千元.
將2015年的年份代號t=9代入,得: (千元)
故預測該地區(qū)2015年農村居民家庭人均純收入為6.8千元左右. 12分
科目:高中數學 來源: 題型:
【題目】將編號為1、2、3、4的四個小球隨機的放入編號為1、2、3、4的四個紙箱中,每個紙箱有且只有一個小球,稱此為一輪“放球”.設一輪“放球”后編號為的紙箱放入的小球編號為,定義吻合度誤差為
(1) 寫出吻合度誤差的可能值集合;
(2) 假設等可能地為1,2,3,4的各種排列,求吻合度誤差的分布列;
(3)某人連續(xù)進行了四輪“放球”,若都滿足,試按(Ⅱ)中的結果,計算出現這種現象的概率(假定各輪“放球”相互獨立);
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸,生產每噸乙產品要用A原料1噸,B原料3噸。銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元,該企業(yè)在一個生產周期內消耗A原料不超過13噸,B原料不超過18噸,那么該企業(yè)可獲得最大利潤是___________萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國人均讀書4.3本(包括網絡文學和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復引用.出現這樣的統(tǒng)計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現對小區(qū)內看書人員進行年齡調查,隨機抽取了一天名讀書者進行調查,將他們的年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.問:
(1)估計在40名讀書者中年齡分布在的人數;
(2)求40名讀書者年齡的平均數和中位數;
(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著手機使用的不斷普及,現在全國各地的中小學生攜帶手機進入校園已經成為了普遍的現象,也引起了一系列的問題。然而,是堵還是疏,就擺在了我們學校老師的面前.某研究型學習小組調查研究“中學生使用手機對學習的影響”,部分統(tǒng)計數據如下表:
不使用手機 | 使用手機 | 合計 | |
學習成績優(yōu)秀人數 | 18 | 7 | 25 |
學習成績不優(yōu)秀人數 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
參考數據:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)試根據以上數據,運用獨立性檢驗思想,指出有多大把握認為中學生使用手機對學習有影響?
(2)研究小組將該樣本中使用手機且成績優(yōu)秀的7位同學記為組,不使用手機且成績優(yōu)秀的18位同學記為組,計劃從組推選的2人和組推選的3人中,隨機挑選兩人來分享學習經驗.求挑選的兩人中一人來自組、另一人來自組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設AB=6,在線段AB上任取兩點C、D(端點A、B除外),將線段AB分成三條線段AC、CD、DB.
(1)若分成的三條線段的長度均為正整數,求這三條線段可以構成三角形(稱為事件A)的概率;
(2)若分成的三條線段的長度均為正實數,求這三條線段可以構成三角形(稱為事件B)的概率;
(3)根據以下用計算機所產生的20組隨機數,試用隨機數模擬的方法,來近似計算(2)中事件B的概率, 20組隨機數如下:
組別 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
X | 0.52 | 0.36 | 0.58 | 0.73 | 0.41 | 0.6 | 0.05 | 0.32 | 0.38 | 0.73 |
Y | 0.76 | 0.39 | 0.37 | 0.01 | 0.04 | 0.28 | 0.03 | 0.15 | 0.14 | 0.86 |
組別 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
X | 0.67 | 0.47 | 0.58 | 0.21 | 0.54 | 0.64 | 0.36 | 0.35 | 0.95 | 0.14 |
Y | 0.41 | 0.54 | 0.51 | 0.37 | 0.31 | 0.23 | 0.56 | 0.89 | 0.17 | 0.03> |
(X和Y都是0~1之間的均勻隨機數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com