【題目】已知△ABC的內(nèi)角A,BC所對的邊分別為a,b,c,已知asinB=bsin2A.

1)求角A;

2)若a=5,△ABC的面積為,求△ABC的周長.

【答案】1;(212.

【解析】

1)由正弦定理可得:sinAsinB=2sinBsinAcosA,可得的值,可得角A的大。

2)由△ABC的面積為及角A的值,可得的值,由余弦定理可得的值,可得△ABC的周長.

解:(1)由asinB=bsin2A及正弦定理,得sinAsinB=2sinBsinAcosA,

因為sinA>0,sinB>0,所以,

,所以.

2)由△ABC的面積為,得,

,所以.

在△ABC中,由余弦定理,得,

因為a=5,所以,

所以,

所以,即△ABC的周長為12.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,斜率為1的直線與橢圓交于,兩點,且,其中為坐標原點.

1)求橢圓的標準方程;

2)設過點且與直線平行的直線與橢圓交于,兩點,若點滿足,且與橢圓的另一個交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟的巨大發(fā)展.據(jù)統(tǒng) ,2018年這一年內(nèi)從 市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了 解乘客出行的滿意度,現(xiàn)從中隨機抽取人次作為樣本,得到下表(單位:人次):

滿意度

老年人

中年人

青年人

乘坐高鐵

乘坐飛機

乘坐高鐵

乘坐飛機

乘坐高鐵

乘坐飛機

10(滿意)

12

1

20

2

20

1

5(一般)

2

3

6

2

4

9

0(不滿意)

1

0

6

3

4

4

1)在樣本中任取,求這個出行人恰好不是青年人的概率;

2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,的分布列和數(shù)學期望;

3)如果甲將要從市出發(fā)到,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面,平面平面,是邊長為2的等邊三角形,,

1)證明:平面平面

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體BACDE中,ABACAB4,AC3DC⊥平面ABC,EA⊥平面ABC,點M在線段BC上,且AM.

1)證明:AM⊥平面BCD;

2)若點F為線段BE的中點,且三棱錐FBCD的體積為1,求CD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)若點在直線上,求直線的極坐標方程;

(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關注,還得到了無數(shù)外國人的關注.某單位有6位外國人,其中關注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關注了此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列ab,c是各項均為正數(shù)的等差數(shù)列,公差為dd0).在ab之間和b,c之間共插入n個實數(shù),使得這n+3個數(shù)構成等比數(shù)列,其公比為q

1)求證:|q|1

2)若a1,n1,求d的值;

3)若插入的n個數(shù)中,有s個位于a,b之間,t個位于b,c之間,且s,t都為奇數(shù),試比較st的大小,并求插入的n個數(shù)的乘積(用a,c,n表示).

查看答案和解析>>

同步練習冊答案