【題目】已知函數(shù),函數(shù)與直線相切,其中,,是自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)的值;
(2)設(shè)函數(shù)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn).
①求的取值范圍;
②設(shè)函數(shù)的極大值和極小值的差為,求實(shí)數(shù)的取值范圍.
【答案】(1)2(2)①②
【解析】
設(shè)切點(diǎn),利用導(dǎo)數(shù)的幾何意義即可得到;
令, 則,
設(shè),根據(jù)在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,列出不等式求解即可.
由,得由,解得,且代入,換元設(shè),,求出的單調(diào)性即可得到M的范圍.
(1)設(shè)直線與函數(shù)相切與點(diǎn),
函數(shù)在點(diǎn)處的切線方程為:, ,
把,代入上式得,.
所以,實(shí)數(shù)的值為2.
(2)①由(1)知,
設(shè)函數(shù)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn),,
令,
則,設(shè)
因?yàn)?/span>,故只需,所以,.
②因?yàn)?/span>,
所以
.
由,得,且.
.
設(shè),,令,
,
在上單調(diào)遞減,從而,
所以,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人某天的工作是駕車從地出發(fā),到兩地辦事,最后返回地,,三地之間各路段行駛時(shí)間及擁堵概率如下表
路段 | 正常行駛所用時(shí)間(小時(shí)) | 上午擁堵概率 | 下午擁堵概率 |
1 | 0.3 | 0.6 | |
2 | 0.2 | 0.7 | |
3 | 0.3 | 0.9 |
若在某路段遇到擁堵,則在該路段行駛時(shí)間需要延長(zhǎng)1小時(shí).
現(xiàn)有如下兩個(gè)方案:
方案甲:上午從地出發(fā)到地辦事然后到達(dá)地,下午從地辦事后返回地;
方案乙:上午從地出發(fā)到
(1)若此人早上8點(diǎn)從地出發(fā),在各地辦事及午餐的累積時(shí)間為2小時(shí),且采用方案甲,求他當(dāng)日18點(diǎn)或18點(diǎn)之前能返回地的概率.
(2)甲乙兩個(gè)方案中,哪個(gè)方案有利于辦完事后更早返回地?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市管轄的海域內(nèi)有一圓形離岸小島,半徑為1公里,小島中心O到岸邊AM的最近距離OA為2公里.該市規(guī)劃開發(fā)小島為旅游景區(qū),擬在圓形小島區(qū)域邊界上某點(diǎn)B處新建一個(gè)浴場(chǎng),在海岸上某點(diǎn)C處新建一家五星級(jí)酒店,在A處新建一個(gè)碼頭,且使得AB與AC滿足垂直且相等,為方便游客,再建一條跨海高速通道OC連接酒店和小島,設(shè).
(1)設(shè),試將表示成的函數(shù);
(2)若OC越長(zhǎng),景區(qū)的輻射功能越強(qiáng),問(wèn)當(dāng)為何值時(shí)OC最長(zhǎng),并求出該最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);
(Ⅲ)當(dāng)時(shí),若對(duì),都有()成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6.
(1)求證:BD⊥平面PAC; (2)求二面角P-BD-A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺(tái)) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;
(2)若該商場(chǎng)的營(yíng)銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購(gòu)買空調(diào)意愿的顧客進(jìn)行問(wèn)卷調(diào)查.假設(shè)該地?cái)M購(gòu)買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過(guò)營(yíng)銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
有購(gòu)買意愿對(duì)應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購(gòu)買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購(gòu)買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)射線與曲線分別交于兩點(diǎn)(異于原點(diǎn)),定點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著國(guó)家綜合國(guó)力的提升和科技的進(jìn)步,截至2018年底,中國(guó)鐵路運(yùn)營(yíng)里程達(dá)13,2萬(wàn)千米,這個(gè)數(shù)字比1949年增長(zhǎng)了5倍;高鐵運(yùn)營(yíng)里程突破2.9萬(wàn)千米,占世界高鐵運(yùn)營(yíng)里程的60%以上,居世界第一位下表截取了2012--2016年中國(guó)高鐵密度的發(fā)展情況(單位:千米/萬(wàn)平方千米).
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
高鐵密度 | 9.75 | 11.49 | 17.14 | 20.66 | 22.92 |
已知高鐵密度y與年份代碼x之間滿足關(guān)系式(為大于0的常數(shù))若對(duì)兩邊取自然對(duì)數(shù),得到,可以發(fā)現(xiàn)與線性相關(guān).
(1)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程(保留到小數(shù)點(diǎn)后一位);
(2)利用(1)的結(jié)論,預(yù)測(cè)到哪一年高鐵密度會(huì)超過(guò)30千米/平方千米.
參考公式設(shè)具有線性相關(guān)系的兩個(gè)變量的一組數(shù)據(jù)為,
則回歸方程的系數(shù):,.
參考數(shù)據(jù):,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線C:x2=4y的準(zhǔn)線上任意一點(diǎn)P作拋物線的切線PA,PB,切點(diǎn)分別為A,B,則A點(diǎn)到準(zhǔn)線的距離與B點(diǎn)到準(zhǔn)線的距離之和的最小值是( )
A.7B.6C.5D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com